These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27586883)

  • 1. Predicting essential proteins based on subcellular localization, orthology and PPI networks.
    Li G; Li M; Wang J; Wu J; Wu FX; Pan Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):279. PubMed ID: 27586883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. United Neighborhood Closeness Centrality and Orthology for Predicting Essential Proteins.
    Li G; Li M; Wang J; Li Y; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1451-1458. PubMed ID: 30596582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks.
    Peng W; Wang J; Wang W; Liu Q; Wu FX; Pan Y
    BMC Syst Biol; 2012 Jul; 6():87. PubMed ID: 22808943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L
    BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new computational strategy for identifying essential proteins based on network topological properties and biological information.
    Qin C; Sun Y; Dong Y
    PLoS One; 2017; 12(7):e0182031. PubMed ID: 28753682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Essential Proteins Based on Integration of Local Fuzzy Fractal Dimension and Subcellular Location Information.
    Shen L; Zhang J; Wang F; Liu K
    Genes (Basel); 2022 Jan; 13(2):. PubMed ID: 35205217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.
    Xu B; Guan J; Wang Y; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):377-387. PubMed ID: 28504946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S; Zhang Z; Li X; Tan Y; Wang L; Chen Z
    BMC Bioinformatics; 2021 Sep; 22(1):430. PubMed ID: 34496745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. United Complex Centrality for Identification of Essential Proteins from PPI Networks.
    Li M; Lu Y; Niu Z; Wu FX
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(2):370-380. PubMed ID: 28368815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J; Qi Y
    PLoS One; 2015; 10(6):e0131418. PubMed ID: 26125187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J; Tang C; Peng W; Xie M; Sun Y; Tang Q; Xiao Q; Yang J
    BMC Bioinformatics; 2021 May; 22(1):248. PubMed ID: 33985429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of essential proteins based on subcellular localization and gene expression correlation.
    Fan Y; Tang X; Hu X; Wu W; Ping Q
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):470. PubMed ID: 29219067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting essential proteins from protein-protein interactions using order statistics.
    Zhang Z; Ruan J; Gao J; Wu FX
    J Theor Biol; 2019 Nov; 480():274-283. PubMed ID: 31251944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SiPAN: simultaneous prediction and alignment of protein-protein interaction networks.
    Alkan F; Erten C
    Bioinformatics; 2015 Jul; 31(14):2356-63. PubMed ID: 25788620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information.
    Zhang W; Xue X; Xie C; Li Y; Liu J; Chen H; Li G
    Interdiscip Sci; 2021 Sep; 13(3):349-361. PubMed ID: 33772722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks.
    Zhang X; Xiao W; Hu X
    PLoS One; 2018; 13(4):e0195410. PubMed ID: 29634727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of essential proteins based on overlapping essential modules.
    Zhao B; Wang J; Li M; Wu FX; Pan Y
    IEEE Trans Nanobioscience; 2014 Dec; 13(4):415-24. PubMed ID: 25122840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.