BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27586929)

  • 1. Hydration effects on the electronic properties of eumelanin building blocks.
    Assis Oliveira LB; L Fonseca T; Costa Cabral BJ; Coutinho K; Canuto S
    J Chem Phys; 2016 Aug; 145(8):084501. PubMed ID: 27586929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferential solvation and optical properties of eumelanin building blocks in binary mixture of methanol and water.
    Assis Oliveira LB; Fonseca TL; Cabral BJC; Coutinho K; Canuto S
    J Chem Phys; 2021 Nov; 155(17):174504. PubMed ID: 34742206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Investigation of DHICA Eumelanin Using Density Functional Theory and Classical Molecular Dynamics Simulations.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    Molecules; 2022 Dec; 27(23):. PubMed ID: 36500509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin.
    Tuna D; Udvarhelyi A; Sobolewski AL; Domcke W; Domratcheva T
    J Phys Chem B; 2016 Apr; 120(14):3493-502. PubMed ID: 27005558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free Energy and Stacking of Eumelanin Nanoaggregates.
    Soltani S; Sowlati-Hashjin S; Tetsassi Feugmo CG; Karttunen M
    J Phys Chem B; 2022 Mar; 126(8):1805-1818. PubMed ID: 35175060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetics of Radical Formation in Eumelanin Building Blocks: Implications for Understanding Photoprotection Mechanisms in Eumelanin.
    Agapito F; Cabral BJ
    J Phys Chem A; 2016 Dec; 120(50):10018-10022. PubMed ID: 28002950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of visible chromophore development in the pulse radiolysis oxidation of 5,6-dihydroxyindole-2-carboxylic acid oligomers: DFT investigation and implications for eumelanin absorption properties.
    Pezzella A; Panzella L; Crescenzi O; Napolitano A; Navaratnam S; Edge R; Land EJ; Barone V; d'Ischia M
    J Org Chem; 2009 May; 74(10):3727-34. PubMed ID: 19385623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UV-absorption spectra of melanosomes containing varying 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid content.
    Peles DN; Simon JD
    J Phys Chem B; 2011 Nov; 115(43):12624-31. PubMed ID: 21923179
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Assis Oliveira LB; Fonseca TL; Cabral BJC
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32784827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of 5,6-dihydroxyindole-2-carboxylic acid: polymorphism of a eumelanin building block on Au(111).
    De Marchi F; Galeotti G; Simenas M; Ji P; Chi L; Tornau EE; Pezzella A; MacLeod J; Ebrahimi M; Rosei F
    Nanoscale; 2019 Mar; 11(12):5422-5428. PubMed ID: 30855042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exciton interactions in helical crystals of a hydrogen-bonded eumelanin monomer.
    Sasikumar D; Vinod K; Sunny J; Hariharan M
    Chem Sci; 2022 Feb; 13(8):2331-2338. PubMed ID: 35310511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A first-principles density-functional calculation of the electronic and vibrational structure of the key melanin monomers.
    Powell BJ; Baruah T; Bernstein N; Brake K; McKenzie RH; Meredith P; Pederson MR
    J Chem Phys; 2004 May; 120(18):8608-15. PubMed ID: 15267788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast excited state dynamics of 5,6-dihydroxyindole, a key eumelanin building block: nonradiative decay mechanism.
    Gauden M; Pezzella A; Panzella L; Napolitano A; d'Ischia M; Sundström V
    J Phys Chem B; 2009 Sep; 113(37):12575-80. PubMed ID: 19691267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study.
    Okuda H; Yoshino K; Wakamatsu K; Ito S; Sota T
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):664-7. PubMed ID: 24750564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent effects on the absorption spectrum and first hyperpolarizability of keto-enol tautomeric forms of anil derivatives: A Monte Carlo/quantum mechanics study.
    Adriano Junior L; Fonseca TL; Castro MA
    J Chem Phys; 2016 Jun; 144(23):234511. PubMed ID: 27334183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Proton-Coupled Electron Transfer Mediates Excited-State Deactivation of a Eumelanin Building Block.
    Nogueira JJ; Corani A; El Nahhas A; Pezzella A; d'Ischia M; González L; Sundström V
    J Phys Chem Lett; 2017 Mar; 8(5):1004-1008. PubMed ID: 28195487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance.
    Tran ML; Powell BJ; Meredith P
    Biophys J; 2006 Feb; 90(3):743-52. PubMed ID: 16284264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin.
    Chen CT; Chuang C; Cao J; Ball V; Ruch D; Buehler MJ
    Nat Commun; 2014 May; 5():3859. PubMed ID: 24848640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control.
    Micillo R; Panzella L; Iacomino M; Prampolini G; Cacelli I; Ferretti A; Crescenzi O; Koike K; Napolitano A; d'Ischia M
    Sci Rep; 2017 Feb; 7():41532. PubMed ID: 28150707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural effects on the electronic absorption properties of 5,6-dihydroxyindole oligomers: the potential of an integrated experimental and DFT approach to model eumelanin optical properties.
    d'Ischia M; Crescenzi O; Pezzella A; Arzillo M; Panzella L; Napolitano A; Barone V
    Photochem Photobiol; 2008; 84(3):600-7. PubMed ID: 18435616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.