BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27586937)

  • 1. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.
    Krajčí M; Kameoka S; Tsai AP
    J Chem Phys; 2016 Aug; 145(8):084703. PubMed ID: 27586937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the catalytic activity of nanoporous gold: Role of twinning in fcc lattice.
    Krajčí M; Kameoka S; Tsai AP
    J Chem Phys; 2017 Jul; 147(4):044713. PubMed ID: 28764355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the dominant factors of porous gold for CO oxidation.
    Kameoka S; Tanabe T; Miyamoto K; Tsai AP
    J Chem Phys; 2016 Jan; 144(3):034703. PubMed ID: 26801039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principle calculations on CO oxidation catalyzed by a gold nanoparticle.
    Chen HT; Chang JG; Ju SP; Chen HL
    J Comput Chem; 2010 Jan; 31(2):258-65. PubMed ID: 19434739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.
    Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q
    Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast Oxidation of Porous Cu Induced by Nano-Twinning.
    Nishimoto K; Krajčí M; Sakurai T; Iwamoto H; Onoda M; Nishimura C; Tsai JT; Wang SF; Kameoka S; Tsai AP
    Inorg Chem; 2018 Mar; 57(5):2908-2916. PubMed ID: 29431437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and activation of CO over flat and stepped Co surfaces: a first principles analysis.
    Ge Q; Neurock M
    J Phys Chem B; 2006 Aug; 110(31):15368-80. PubMed ID: 16884257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO self-promoting oxidation on nanosized gold clusters: triangular Au3 active site and CO induced O-O scission.
    Liu C; Tan Y; Lin S; Li H; Wu X; Li L; Pei Y; Zeng XC
    J Am Chem Soc; 2013 Feb; 135(7):2583-95. PubMed ID: 23343464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N,N-Dimethylformamide-stabilized gold nanoclusters as a catalyst for the reduction of 4-nitrophenol.
    Yamamoto H; Yano H; Kouchi H; Obora Y; Arakawa R; Kawasaki H
    Nanoscale; 2012 Jul; 4(14):4148-54. PubMed ID: 22422276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars-van Krevelen Mechanism.
    Kim HY; Henkelman G
    J Phys Chem Lett; 2013 Jan; 4(1):216-21. PubMed ID: 26291234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of Bimolecular Routes in the Activation of Diatomic Molecules with Strong Chemical Bonds (O2, NO, CO, N2) on Catalytic Surfaces.
    Hibbitts D; Iglesia E
    Acc Chem Res; 2015 May; 48(5):1254-62. PubMed ID: 25921328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction mechanisms for the CO oxidation on Au/CeO(2) catalysts: activity of substitutional Au(3+)/Au(+) cations and deactivation of supported Au(+) adatoms.
    Camellone MF; Fabris S
    J Am Chem Soc; 2009 Aug; 131(30):10473-83. PubMed ID: 19722624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous mercury oxidation on au(111) from first principles.
    Lim DH; Wilcox J
    Environ Sci Technol; 2013 Aug; 47(15):8515-22. PubMed ID: 23805868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mystery of gold's chemical activity: local bonding, morphology and reactivity of atomic oxygen.
    Baker TA; Liu X; Friend CM
    Phys Chem Chem Phys; 2011 Jan; 13(1):34-46. PubMed ID: 21103516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation.
    Wang S; Omidvar N; Marx E; Xin H
    Phys Chem Chem Phys; 2018 Feb; 20(9):6055-6059. PubMed ID: 29435548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multipoint anchoring of the [2.2.2.2]metacyclophane motif to a gold surface via self-assembly: coordination chemistry of a cyclic tetraisocyanide revisited.
    Toriyama M; Maher TR; Holovics TC; Vanka K; Day VW; Berrie CL; Thompson WH; Barybin MV
    Inorg Chem; 2008 Apr; 47(8):3284-91. PubMed ID: 18345627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic activation of a solid oxide in electronic contact with gold nanoparticles.
    Behl M; Jain PK
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):992-7. PubMed ID: 25425526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermally activated surface oxygen defects at the perimeter of Au/TiO2: a DFT+U study.
    Saqlain MA; Hussain A; Siddiq M; Ferreira AR; Leitão AA
    Phys Chem Chem Phys; 2015 Oct; 17(38):25403-10. PubMed ID: 26358616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic activities of subnanometer gold clusters (Au₁₆-Au₁₈, Au₂₀, and Au₂₇-Au₃₅) for CO oxidation.
    Gao Y; Shao N; Pei Y; Chen Z; Zeng XC
    ACS Nano; 2011 Oct; 5(10):7818-29. PubMed ID: 21888432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.