These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27587122)

  • 1. Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma.
    Gao R; Yuan C; Li H; Jia J; Zhou ZX; Wang Y; Wang X; Wu J
    Rev Sci Instrum; 2016 Aug; 87(8):083506. PubMed ID: 27587122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.
    Kumar N; Pal DK; Jadon AS; Pal UN; Rahaman H; Prakash R
    Rev Sci Instrum; 2016 Mar; 87(3):033503. PubMed ID: 27036773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of microwave-induced plasma in argon at atmospheric pressure.
    Baeva M; Bösel A; Ehlbeck J; Loffhagen D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056404. PubMed ID: 23004876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a long-slot microwave plasma source.
    Kuwata Y; Kasuya T; Miyamoto N; Wada M
    Rev Sci Instrum; 2016 Feb; 87(2):02C104. PubMed ID: 26932114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High intensity electron cyclotron resonance proton source for low energy high intensity proton accelerator.
    Roychowdhury P; Chakravarthy DP
    Rev Sci Instrum; 2009 Dec; 80(12):123305. PubMed ID: 20059138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discharge characteristics of steady-state high-density plasma source based on cascade arc discharge with hollow cathode.
    Yamasaki K; Yanagi O; Sunada Y; Hatta K; Shigesada R; Sumino M; Yamaguchi T; Islam MA; Tamura N; Okuno H; Namba S
    Rev Sci Instrum; 2022 May; 93(5):053502. PubMed ID: 35649751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Investigation on the electron density of a micro-plasma jet operated at atmospheric pressure].
    Li XC; Zhao N; Liu WY; Liu ZQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1756-8. PubMed ID: 20827964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and research of a coaxial microwave plasma thruster.
    Yang J; Xu Y; Tang J; Mao G; Yang T; Tan X
    Rev Sci Instrum; 2008 Aug; 79(8):083503. PubMed ID: 19044345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma.
    Vodopyanov AV; Golubev SV; Mansfeld DA; Sennikov PG; Drozdov YN
    Rev Sci Instrum; 2011 Jun; 82(6):063503. PubMed ID: 21721687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic study of an expanded argon microwave (2.45 GHz) plasma at atmospheric pressure in a helium environment.
    García MC; Varo M; Martínez P
    Appl Spectrosc; 2009 Jul; 63(7):822-9. PubMed ID: 19589221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of plasma potential in high-pressure microwave plasmas.
    Tarasova AV; Podder NK; Clothiaux EJ
    Rev Sci Instrum; 2009 Apr; 80(4):043506. PubMed ID: 19405659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and confinement of microwave gas-plasma in photonic dielectric microstructure.
    Debord B; Jamier R; Gérôme F; Leroy O; Boisse-Laporte C; Leprince P; Alves LL; Benabid F
    Opt Express; 2013 Oct; 21(21):25509-16. PubMed ID: 24150390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma characterization of a microwave discharge ion source with mirror magnetic field configuration.
    Mallick C; Bandyopadhyay M; Kumar R
    Rev Sci Instrum; 2018 Dec; 89(12):125112. PubMed ID: 30599570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogalvanic effect in a hollow cathode discharge with nonlaser sources.
    Apel CT; Keller RA; Zalewski EF; Engleman R
    Appl Opt; 1982 Apr; 21(8):1465-7. PubMed ID: 20389874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.
    Vizir AV; Tyunkov AV; Shandrikov MV; Oks EM
    Rev Sci Instrum; 2010 Feb; 81(2):02B903. PubMed ID: 20192469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniaturized ECR plasma flood gun for wafer charge neutralization.
    Jiang Y; Peng S; Wu W; Ma T; Zhang J; Ren H; Li K; Zhang T; Wen J; Xu Y; Zhang A; Sun J; Guo Z; Chen J
    Rev Sci Instrum; 2020 Mar; 91(3):033319. PubMed ID: 32259944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature diagnostics of ECR plasma by measurement of electron bremsstrahlung.
    Kasthurirangan S; Agnihotri AN; Desai CA; Tribedi LC
    Rev Sci Instrum; 2012 Jul; 83(7):073111. PubMed ID: 22852675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ion thruster internal discharge chamber electrostatic probe diagnostic technique using a high-speed probe positioning system.
    Herman DA; Gallimore AD
    Rev Sci Instrum; 2008 Jan; 79(1):013302. PubMed ID: 18248026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A washer gun plasma system for microwave-plasma interaction experiments.
    V P A; Rathod PJ; Raval J; Bahl R; Saxena YC
    Rev Sci Instrum; 2019 Jan; 90(1):013502. PubMed ID: 30709226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.