These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 27587125)

  • 1. A novel optical apparatus for the study of rolling contact wear/fatigue based on a high-speed camera and multiple-source laser illumination.
    Bodini I; Sansoni G; Lancini M; Pasinetti S; Docchio F
    Rev Sci Instrum; 2016 Aug; 87(8):083701. PubMed ID: 27587125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Contact Stress on Surface Microstructure and Wear Property of D2/U71Mn Wheel-Rail Material.
    Liu CP; Zhao XJ; Liu PT; Pan JZ; Ren RM
    Materials (Basel); 2019 Oct; 12(19):. PubMed ID: 31597274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wear Enhancement of Wheel-Rail Interaction by Ultrasonic Nanocrystalline Surface Modification Technique.
    Chang S; Pyun YS; Amanov A
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on Wear and Fatigue Performance of Two Types of High-Speed Railway Wheel Materials at Different Ambient Temperatures.
    Ma L; Wang W; Guo J; Liu Q
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32150910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Wear Detection Using High-Speed Imaging.
    Soleimani S; Sukumaran J; Douterloigne K; De Baets P; Philips W
    Microsc Microanal; 2016 Aug; 22(4):820-40. PubMed ID: 27518066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Tribo-Fatigue Damage Transition and Mapping for Wheel Material under Rolling-Sliding Contact Condition.
    He C; Liu J; Wang W; Liu Q
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast auto-acquisition tomography tilt series by using HD video camera in ultra-high voltage electron microscope.
    Nishi R; Cao M; Kanaji A; Nishida T; Yoshida K; Isakozawa S
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i25. PubMed ID: 25359822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling wheel/rail rolling noise for a high-speed train running along an infinitely long periodic slab track.
    Sheng X; Cheng G; Thompson D
    J Acoust Soc Am; 2020 Jul; 148(1):174. PubMed ID: 32752756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of wheel/rail contact conditions on the microstructure and hardness of railway wheels.
    Molyneux-Berry P; Davis C; Bevan A
    ScientificWorldJournal; 2014; 2014():209752. PubMed ID: 24526883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new solution method for wheel/rail rolling contact.
    Yang J; Song H; Fu L; Wang M; Li W
    Springerplus; 2016; 5():471. PubMed ID: 27217986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. System for measuring the coordinates of tire surfaces in transient conditions when rolling over obstacles: description of the system and performance analysis.
    Castellini P; Di Giuseppe A
    Rev Sci Instrum; 2008 Jun; 79(6):065105. PubMed ID: 18601435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the circular motion of small objects using laser stroboscopic images.
    Wang H; Fu Y; Du R
    Rev Sci Instrum; 2008 Jan; 79(1):015110. PubMed ID: 18248069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the effect of residual waviness formed by rail profile milling of reshaped surface on wheel-rail contact stresses and low cyclic fatigue.
    Luo Y; Yang G; Guo G
    Sci Rep; 2024 Aug; 14(1):18836. PubMed ID: 39138371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A High Reliability 3D Scanning Measurement of the Complex Shape Rail Surface of the Electromagnetic Launcher.
    Wang Z; Li B
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32182708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional digital image correlation technique using single high-speed camera for measuring large out-of-plane displacements at high framing rates.
    Pankow M; Justusson B; Waas AM
    Appl Opt; 2010 Jun; 49(17):3418-27. PubMed ID: 20539362
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Fukagai S; Watson M; Brunskill HP; Hunter AK; Marshall MB; Lewis R
    Proc Math Phys Eng Sci; 2021 Nov; 477(2255):20210442. PubMed ID: 35474957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A measurement system applicable for landslide experiments in the field.
    Guo WZ; Xu XZ; Wang WL; Yang JS; Liu YK; Xu FL
    Rev Sci Instrum; 2016 Apr; 87(4):044501. PubMed ID: 27131688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A new approach for studying the retinal and choroidal circulation].
    Yoneya S
    Nippon Ganka Gakkai Zasshi; 2004 Dec; 108(12):836-61; discussion 862. PubMed ID: 15656089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the applied load on surface contact fatigue of dental filling materials.
    Fujii K; Carrick TE; Bicker R; McCabe JF
    Dent Mater; 2004 Dec; 20(10):931-8. PubMed ID: 15501321
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.