These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27587142)

  • 1. Characterization of zero-bias microwave diode power detectors at cryogenic temperature.
    Giordano V; Fluhr C; Dubois B; Rubiola E
    Rev Sci Instrum; 2016 Aug; 87(8):084702. PubMed ID: 27587142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryogenic low-noise amplifiers for measurements with superconducting detectors.
    Novikov IL; Ivanov BI; Ponomarev DV; Vostretsov AG
    Beilstein J Nanotechnol; 2020; 11():1316-1320. PubMed ID: 32953375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-Art Room Temperature Operable Zero-Bias Schottky Diode-Based Terahertz Detector Up to 5.56 THz.
    Yadav R; Ludwig F; Faridi FR; Klopf JM; Roskos HG; Preu S; Penirschke A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InGaAs Diodes for Terahertz Sensing-Effect of Molecular Beam Epitaxy Growth Conditions.
    Palenskis V; Minkevičius L; Matukas J; Jokubauskis D; Pralgauskaitė S; Seliuta D; Čechavičius B; Butkutė R; Valušis G
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phase noise measurements with a cryogenic power-splitter to minimize the cross-spectral collapse effect.
    Hati A; Nelson CW; Pappas DP; Howe DA
    Rev Sci Instrum; 2017 Nov; 88(11):114707. PubMed ID: 29195354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.
    Villa E; Aja B; de la Fuente L; Artal E
    Rev Sci Instrum; 2016 Jan; 87(1):014706. PubMed ID: 26827340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant spin-torque diode sensitivity in the absence of bias magnetic field.
    Fang B; Carpentieri M; Hao X; Jiang H; Katine JA; Krivorotov IN; Ocker B; Langer J; Wang KL; Zhang B; Azzerboni B; Amiri PK; Finocchio G; Zeng Z
    Nat Commun; 2016 Apr; 7():11259. PubMed ID: 27052973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooling a low noise amplifier with a micromachined cryogenic cooler.
    Cao HS; Witvers RH; Vanapalli S; Holland HJ; ter Brake HJ
    Rev Sci Instrum; 2013 Oct; 84(10):105102. PubMed ID: 24182158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 30 GHz-voltage controlled oscillator operating at 4 K.
    Hollmann A; Jirovec D; Kucharski M; Kissinger D; Fischer G; Schreiber LR
    Rev Sci Instrum; 2018 Nov; 89(11):114701. PubMed ID: 30501331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.
    Kumar A; Kashid R; Ghosh A; Kumar V; Singh R
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8213-23. PubMed ID: 26963627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Low-Noise Direct Incremental A/D Converter for FET-Based THz Imaging Detectors.
    Khatib M; Perenzoni M
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29880744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wideband cryogenic microwave low-noise amplifier.
    Ivanov BI; Volkhin DI; Novikov IL; Pitsun DK; Moskalev DO; Rodionov IA; Il'ichev E; Vostretsov AG
    Beilstein J Nanotechnol; 2020; 11():1484-1491. PubMed ID: 33083196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency noise of free-running 4.6 μm distributed feedback quantum cascade lasers near room temperature.
    Tombez L; Di Francesco J; Schilt S; Di Domenico G; Faist J; Thomann P; Hofstetter D
    Opt Lett; 2011 Aug; 36(16):3109-11. PubMed ID: 21847176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.
    Sitnikov A; Kalabukhova E; Oliynyk V; Kolisnichenko M
    Rev Sci Instrum; 2017 May; 88(5):054702. PubMed ID: 28571463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level noise source for the calibration of Johnson noise power thermometers.
    Blalock TV; Borkowski CJ
    Rev Sci Instrum; 1978 Aug; 49(8):1046. PubMed ID: 18699251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryogenic ultra-low-noise SiGe transistor amplifier.
    Ivanov BI; Trgala M; Grajcar M; Il'ichev E; Meyer HG
    Rev Sci Instrum; 2011 Oct; 82(10):104705. PubMed ID: 22047315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low noise and high precision linear power supply with thermal foldback protection.
    Carniti P; Cassina L; Gotti C; Maino M; Pessina G
    Rev Sci Instrum; 2016 May; 87(5):054706. PubMed ID: 27250450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-gain cryogenic amplifier assembly employing a commercial CMOS operational amplifier.
    Proctor JE; Smith AW; Jung TM; Woods SI
    Rev Sci Instrum; 2015 Jul; 86(7):073102. PubMed ID: 26233351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave interferometry: application to precision measurements and noise reduction techniques.
    Ivanov EN; Tobar ME; Woode RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1526-36. PubMed ID: 18250000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photonic microwave generation with high-power photodiodes.
    Fortier TM; Quinlan F; Hati A; Nelson C; Taylor JA; Fu Y; Campbell J; Diddams SA
    Opt Lett; 2013 May; 38(10):1712-4. PubMed ID: 23938920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.