These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 27587181)

  • 1. Note: Autocollimation with ultra-high resolution and stability using telephoto objective together with optical enlargement and beam drift compensation.
    Zhu F; Tan X; Tan J; Fan Z
    Rev Sci Instrum; 2016 Aug; 87(8):086110. PubMed ID: 27587181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beam splitting target reflector based compensation for angular drift of laser beam in laser autocollimation of measuring small angle deviations.
    Zhu F; Tan J; Cui J
    Rev Sci Instrum; 2013 Jun; 84(6):065116. PubMed ID: 23822387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: Differential amplified high-resolution tilt angle measurement system.
    Zhao S; Li Y; Zhang E; Huang P; Wei H
    Rev Sci Instrum; 2014 Sep; 85(9):096104. PubMed ID: 25273790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A heterodyne straightness and displacement measuring interferometer with laser beam drift compensation for long-travel linear stage metrology.
    Chen B; Cheng L; Yan L; Zhang E; Lou Y
    Rev Sci Instrum; 2017 Mar; 88(3):035114. PubMed ID: 28372378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive angle sensor based on laser autocollimation for measurement of stage tilt motions.
    Shimizu Y; Tan SL; Murata D; Maruyama T; Ito S; Chen YL; Gao W
    Opt Express; 2016 Feb; 24(3):2788-805. PubMed ID: 26906848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error.
    Huang Y; Fan KC; Sun W; Liu S
    Opt Express; 2018 Jun; 26(13):17185-17198. PubMed ID: 30119533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved accuracy of capacitive sensor-based micro-angle measurement with angular-to-linear displacement conversion.
    Tan X; Zhu F; Wang C; Shi J; Qi X; Yu Y; Yuan F; Tan J
    Rev Sci Instrum; 2017 Nov; 88(11):115104. PubMed ID: 29195359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision roll angle measurement system based on autocollimation.
    Ren W; Cui J; Tan J
    Appl Opt; 2022 May; 61(13):3811-3818. PubMed ID: 36256424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical Setup for Error Compensation in a Laser Triangulation System.
    Kienle P; Batarilo L; Akgül M; Köhler MH; Wang K; Jakobi M; Koch AW
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32882931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference sensor for ultra-precision measurement of laser beam angular deflection.
    Dobosz M
    Rev Sci Instrum; 2018 Nov; 89(11):115003. PubMed ID: 30501332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation method in compliance with the criteria with high accuracy and stability.
    Zhu F; Tan J; Cui J
    Opt Express; 2013 May; 21(9):11391-403. PubMed ID: 23669996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small angular displacement measurement based on an autocollimator and a common-path compensation principle.
    Li K; Kuang C; Liu X
    Rev Sci Instrum; 2013 Jan; 84(1):015108. PubMed ID: 23387696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High resolution and stability roll angle measurement method for precision linear displacement stages.
    Jin T; Xia G; Hou W; Le Y; Han S
    Rev Sci Instrum; 2017 Feb; 88(2):023102. PubMed ID: 28249520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-grating with multiple diffractions enabled small angle measurement.
    Wang J; Liu C; Qin S; Zhu G; Shao Y; Fu S; Liu D
    Opt Express; 2019 Feb; 27(4):5289-5296. PubMed ID: 30876129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a compact four degree-of-freedom active compensation system to restrain laser's angular drift and parallel drift.
    Liu S; Tan S; Huang Y; Wang Y; Fan KC
    Rev Sci Instrum; 2019 Nov; 90(11):115002. PubMed ID: 31779377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-degree-of-freedom autocollimation angle measurement method based on crosshair displacement and rotation.
    Guo Y; Cheng H; Liu G
    Rev Sci Instrum; 2023 Jan; 94(1):015108. PubMed ID: 36725544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust five-degree-of-freedom measurement system with self-compensation and air turbulence protection.
    Liu W; Yu Z; Duan F; Hu H; Fu X; Bao R
    Opt Express; 2023 Jan; 31(3):4652-4666. PubMed ID: 36785427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A heterodyne interferometer for angle metrology.
    Hahn I; Weilert M; Wang X; Goullioud R
    Rev Sci Instrum; 2010 Apr; 81(4):045103. PubMed ID: 20441364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.
    Xie K; Shi X; Zhao K; Guo L; Zhang H
    Rev Sci Instrum; 2017 Feb; 88(2):026101. PubMed ID: 28249525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autocollimation angle-measurement method with a large range based on spot deformation.
    Li R; Xiao H; Xie L; Feng T; Ma Y; Guo J; Zhou M; Nikitin M; Konyakhin I
    Opt Express; 2022 Oct; 30(21):38727-38744. PubMed ID: 36258431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.