BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 27587585)

  • 21. Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API.
    Kono N; Arakawa K; Ogawa R; Kido N; Oshita K; Ikegami K; Tamaki S; Tomita M
    PLoS One; 2009 Nov; 4(11):e7710. PubMed ID: 19907644
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities.
    Tan MH
    Acc Chem Res; 2023 Nov; 56(21):3033-3044. PubMed ID: 37827987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel computational strategy to identify A-to-I RNA editing sites by RNA-Seq data: de novo detection in human spinal cord tissue.
    Picardi E; Gallo A; Galeano F; Tomaselli S; Pesole G
    PLoS One; 2012; 7(9):e44184. PubMed ID: 22957051
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ExpEdit: a webserver to explore human RNA editing in RNA-Seq experiments.
    Picardi E; D'Antonio M; Carrabino D; Castrignanò T; Pesole G
    Bioinformatics; 2011 May; 27(9):1311-2. PubMed ID: 21427194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. dbRES: a web-oriented database for annotated RNA editing sites.
    He T; Du P; Li Y
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D141-4. PubMed ID: 17088288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A-to-I RNA Editing Contributes to Proteomic Diversity in Cancer.
    Peng X; Xu X; Wang Y; Hawke DH; Yu S; Han L; Zhou Z; Mojumdar K; Jeong KJ; Labrie M; Tsang YH; Zhang M; Lu Y; Hwu P; Scott KL; Liang H; Mills GB
    Cancer Cell; 2018 May; 33(5):817-828.e7. PubMed ID: 29706454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. APAatlas: decoding alternative polyadenylation across human tissues.
    Hong W; Ruan H; Zhang Z; Ye Y; Liu Y; Li S; Jing Y; Zhang H; Diao L; Liang H; Han L
    Nucleic Acids Res; 2020 Jan; 48(D1):D34-D39. PubMed ID: 31586392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CREDO: Highly confident disease-relevant A-to-I RNA-editing discovery in breast cancer.
    Hwang W; Calza S; Silvestri M; Pawitan Y; Lee Y
    Sci Rep; 2019 Mar; 9(1):5064. PubMed ID: 30911020
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables.
    Giacopuzzi E; Gennarelli M; Sacco C; Filippini A; Mingardi J; Magri C; Barbon A
    BMC Genomics; 2018 Dec; 19(1):963. PubMed ID: 30587120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SliceIt: A genome-wide resource and visualization tool to design CRISPR/Cas9 screens for editing protein-RNA interaction sites in the human genome.
    Vemuri S; Srivastava R; Mir Q; Hashemikhabir S; Dong XC; Janga SC
    Methods; 2020 Jun; 178():104-113. PubMed ID: 31494246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Setting up the JBrowse genome browser.
    Skinner ME; Holmes IH
    Curr Protoc Bioinformatics; 2010 Dec; Chapter 9():Unit 9.13. PubMed ID: 21154710
    [TBL] [Abstract][Full Text] [Related]  

  • 32. JBrowse: a dynamic web platform for genome visualization and analysis.
    Buels R; Yao E; Diesh CM; Hayes RD; Munoz-Torres M; Helt G; Goodstein DM; Elsik CG; Lewis SE; Stein L; Holmes IH
    Genome Biol; 2016 Apr; 17():66. PubMed ID: 27072794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. REDIdb: an upgraded bioinformatics resource for organellar RNA editing sites.
    Picardi E; Regina TM; Verbitskiy D; Brennicke A; Quagliariello C
    Mitochondrion; 2011 Mar; 11(2):360-5. PubMed ID: 21059409
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated Isoform Diversity Detector (AIDD): a pipeline for investigating transcriptome diversity of RNA-seq data.
    Plonski NM; Johnson E; Frederick M; Mercer H; Fraizer G; Meindl R; Casadesus G; Piontkivska H
    BMC Bioinformatics; 2020 Dec; 21(Suppl 18):578. PubMed ID: 33375933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ADeditome provides the genomic landscape of A-to-I RNA editing in Alzheimer's disease.
    Wu S; Yang M; Kim P; Zhou X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33401309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic identification of A-to-I RNA editing in zebrafish development and adult organs.
    Buchumenski I; Holler K; Appelbaum L; Eisenberg E; Junker JP; Levanon EY
    Nucleic Acids Res; 2021 May; 49(8):4325-4337. PubMed ID: 33872356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The landscape of the A-to-I RNA editome from 462 human genomes.
    Ouyang Z; Ren C; Liu F; An G; Bo X; Shu W
    Sci Rep; 2018 Aug; 8(1):12069. PubMed ID: 30104667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unveiling the functional and evolutionary landscape of RNA editing in chicken using genomics and transcriptomics.
    Wang YM; Ye LQ; Wang MS; Zhang JJ; Khederzadeh S; Irwin DM; Ren XD; Zhang YP; Wu DD
    Zool Res; 2022 Nov; 43(6):1011-1022. PubMed ID: 36266925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptogenomics identification and characterization of RNA editing sites in human primary monocytes using high-depth next generation sequencing data.
    Leong WM; Ripen AM; Mirsafian H; Mohamad SB; Merican AF
    Genomics; 2019 Jul; 111(4):899-905. PubMed ID: 29885984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pan-RNA editing analysis of the bovine genome.
    Cai W; Shi L; Cao M; Shen D; Li J; Zhang S; Song J
    RNA Biol; 2021 Mar; 18(3):368-381. PubMed ID: 32794424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.