BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 27587661)

  • 1. Simultaneous discovery of cancer subtypes and subtype features by molecular data integration.
    Le Van T; van Leeuwen M; Carolina Fierro A; De Maeyer D; Van den Eynden J; Verbeke L; De Raedt L; Marchal K; Nijssen S
    Bioinformatics; 2016 Sep; 32(17):i445-i454. PubMed ID: 27587661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subtype-GAN: a deep learning approach for integrative cancer subtyping of multi-omics data.
    Yang H; Chen R; Li D; Wang Z
    Bioinformatics; 2021 Aug; 37(16):2231-2237. PubMed ID: 33599254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cancer mutational signatures representation by large-scale context embedding.
    Zhang Y; Xiao Y; Yang M; Ma J
    Bioinformatics; 2020 Jul; 36(Suppl_1):i309-i316. PubMed ID: 32657413
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway-based deep clustering for molecular subtyping of cancer.
    Mallavarapu T; Hao J; Kim Y; Oh JH; Kang M
    Methods; 2020 Feb; 173():24-31. PubMed ID: 31247294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling clinical and molecular covariates of mutational process activity in cancer.
    Robinson W; Sharan R; Leiserson MDM
    Bioinformatics; 2019 Jul; 35(14):i492-i500. PubMed ID: 31510643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep structure integrative representation of multi-omics data for cancer subtyping.
    Yang B; Yang Y; Su X
    Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer.
    Gendoo DM; Ratanasirigulchai N; Schröder MS; Paré L; Parker JS; Prat A; Haibe-Kains B
    Bioinformatics; 2016 Apr; 32(7):1097-9. PubMed ID: 26607490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new correlation clustering method for cancer mutation analysis.
    Hou JP; Emad A; Puleo GJ; Ma J; Milenkovic O
    Bioinformatics; 2016 Dec; 32(24):3717-3728. PubMed ID: 27540270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pan-cancer integrative analysis of whole-genome De novo somatic point mutations reveals 17 cancer types.
    Ghareyazi A; Kazemi A; Hamidieh K; Dashti H; Tahaei MS; Rabiee HR; Alinejad-Rokny H; Dehzangi I
    BMC Bioinformatics; 2022 Jul; 23(1):298. PubMed ID: 35879674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutation profile for top-k patient search exploiting Gene-Ontology and orthogonal non-negative matrix factorization.
    Kim S; Sael L; Yu H
    Bioinformatics; 2015 Nov; 31(22):3653-9. PubMed ID: 26209432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
    Ahmad A; Fröhlich H
    Bioinformatics; 2017 Nov; 33(22):3558-3566. PubMed ID: 28961917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust clustering of noisy high-dimensional gene expression data for patients subtyping.
    Coretto P; Serra A; Tagliaferri R
    Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian two-way latent structure model for genomic data integration reveals few pan-genomic cluster subtypes in a breast cancer cohort.
    Swanson DM; Lien T; Bergholtz H; Sørlie T; Frigessi A
    Bioinformatics; 2019 Dec; 35(23):4886-4897. PubMed ID: 31077301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting evolutionary patterns of cancers using consensus trees.
    Christensen S; Kim J; Chia N; Koyejo O; El-Kebir M
    Bioinformatics; 2020 Dec; 36(Suppl_2):i684-i691. PubMed ID: 33381820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian tensor factorization-drive breast cancer subtyping by integrating multi-omics data.
    Liu Q; Cheng B; Jin Y; Hu P
    J Biomed Inform; 2022 Jan; 125():103958. PubMed ID: 34839017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating hypertension phenotype and genotype with hybrid non-negative matrix factorization.
    Luo Y; Mao C; Yang Y; Wang F; Ahmad FS; Arnett D; Irvin MR; Shah SJ
    Bioinformatics; 2019 Apr; 35(8):1395-1403. PubMed ID: 30239588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-view singular value decomposition for disease subtyping and genetic associations.
    Sun J; Bi J; Kranzler HR
    BMC Genet; 2014 Jun; 15():73. PubMed ID: 24938865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.