These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 27587667)

  • 1. Information-optimal genome assembly via sparse read-overlap graphs.
    Shomorony I; Kim SH; Courtade TA; Tse DN
    Bioinformatics; 2016 Sep; 32(17):i494-i502. PubMed ID: 27587667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient and scalable graph modeling approach for capturing information at different levels in next generation sequencing reads.
    Warnke JD; Ali HH
    BMC Bioinformatics; 2013; 14 Suppl 11(Suppl 11):S7. PubMed ID: 24564333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Read mapping on de Bruijn graphs.
    Limasset A; Cazaux B; Rivals E; Peterlongo P
    BMC Bioinformatics; 2016 Jun; 17(1):237. PubMed ID: 27306641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coverage-preserving sparsification of overlap graphs for long-read assembly.
    Jain C
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36892439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the sensitivity of long read overlap detection using grouped short k-mer matches.
    Du N; Chen J; Sun Y
    BMC Genomics; 2019 Apr; 20(Suppl 2):190. PubMed ID: 30967123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
    Kundeti VK; Rajasekaran S; Dinh H; Vaughn M; Thapar V
    BMC Bioinformatics; 2010 Nov; 11():560. PubMed ID: 21078174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of string and de Bruijn graphs for genome assembly.
    Huang YT; Liao CF
    Bioinformatics; 2016 May; 32(9):1301-7. PubMed ID: 26755626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.
    Warnke-Sommer J; Ali H
    BMC Genomics; 2016 May; 17():340. PubMed ID: 27154001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A memory-efficient data structure representing exact-match overlap graphs with application for next-generation DNA assembly.
    Dinh H; Rajasekaran S
    Bioinformatics; 2011 Jul; 27(14):1901-7. PubMed ID: 21636593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bit-parallel sequence-to-graph alignment.
    Rautiainen M; Mäkinen V; Marschall T
    Bioinformatics; 2019 Oct; 35(19):3599-3607. PubMed ID: 30851095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HALC: High throughput algorithm for long read error correction.
    Bao E; Lan L
    BMC Bioinformatics; 2017 Apr; 18(1):204. PubMed ID: 28381259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CoLoRMap: Correcting Long Reads by Mapping short reads.
    Haghshenas E; Hach F; Sahinalp SC; Chauve C
    Bioinformatics; 2016 Sep; 32(17):i545-i551. PubMed ID: 27587673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apollo: a sequencing-technology-independent, scalable and accurate assembly polishing algorithm.
    Firtina C; Kim JS; Alser M; Senol Cali D; Cicek AE; Alkan C; Mutlu O
    Bioinformatics; 2020 Jun; 36(12):3669-3679. PubMed ID: 32167530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph analysis of fragmented long-read bacterial genome assemblies.
    Marijon P; Chikhi R; Varré JS
    Bioinformatics; 2019 Nov; 35(21):4239-4246. PubMed ID: 30918948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GraphBin: refined binning of metagenomic contigs using assembly graphs.
    Mallawaarachchi V; Wickramarachchi A; Lin Y
    Bioinformatics; 2020 Jun; 36(11):3307-3313. PubMed ID: 32167528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In silico read normalization using set multi-cover optimization.
    Durai DA; Schulz MH
    Bioinformatics; 2018 Oct; 34(19):3273-3280. PubMed ID: 29912280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating long-range connectivity information into de Bruijn graphs.
    Turner I; Garimella KV; Iqbal Z; McVean G
    Bioinformatics; 2018 Aug; 34(15):2556-2565. PubMed ID: 29554215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fast hybrid short read fragment assembly algorithm.
    Schmidt B; Sinha R; Beresford-Smith B; Puglisi SJ
    Bioinformatics; 2009 Sep; 25(17):2279-80. PubMed ID: 19535537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. cloudSPAdes: assembly of synthetic long reads using de Bruijn graphs.
    Tolstoganov I; Bankevich A; Chen Z; Pevzner PA
    Bioinformatics; 2019 Jul; 35(14):i61-i70. PubMed ID: 31510642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.