These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 27587684)

  • 1. DeepChrome: deep-learning for predicting gene expression from histone modifications.
    Singh R; Lanchantin J; Robins G; Qi Y
    Bioinformatics; 2016 Sep; 32(17):i639-i648. PubMed ID: 27587684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDiff: DEEP-learning for predicting DIFFerential gene expression from histone modifications.
    Sekhon A; Singh R; Qi Y
    Bioinformatics; 2018 Sep; 34(17):i891-i900. PubMed ID: 30423076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finding combinatorial histone code by semi-supervised biclustering.
    Teng L; Tan K
    BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering histone code of transcriptional regulation in malaria parasites by large-scale data mining.
    Chen H; Lonardi S; Zheng J
    Comput Biol Chem; 2014 Jun; 50():3-10. PubMed ID: 24581698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate and highly interpretable prediction of gene expression from histone modifications.
    Frasca F; Matteucci M; Leone M; Morelli MJ; Masseroli M
    BMC Bioinformatics; 2022 Apr; 23(1):151. PubMed ID: 35473556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Gene Expression Prediction by Ensemble Deep Networks on Histone Modification Data.
    Huang Z; Wang J; Yan Z; Wan L; Guo M
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):340-351. PubMed ID: 34971538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinations of Histone Modifications for Pattern Genes.
    Cui XJ; Shi CX
    Acta Biotheor; 2016 Jun; 64(2):121-32. PubMed ID: 26846124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling epigenetic regulation of gene expression in 12 human cell types reveals combinatorial patterns of cell-type-specific genes.
    Lu Y; Qu W; Min B; Liu Z; Chen C; Zhang C
    IET Syst Biol; 2014 Jun; 8(3):104-15. PubMed ID: 25014377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChARM: Discovery of combinatorial chromatin modification patterns in hepatitis B virus X-transformed mouse liver cancer using association rule mining.
    Park SH; Lee SM; Kim YJ; Kim S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):452. PubMed ID: 28105934
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial patterns of histone modifications in Saccharomyces cerevisiae.
    Cui XJ; Li H; Liu GQ
    Yeast; 2011 Sep; 28(9):683-91. PubMed ID: 21815215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-order neural networks and kernel methods for peptide-MHC binding prediction.
    Kuksa PP; Min MR; Dugar R; Gerstein M
    Bioinformatics; 2015 Nov; 31(22):3600-7. PubMed ID: 26206306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualizing complex feature interactions and feature sharing in genomic deep neural networks.
    Liu G; Zeng H; Gifford DK
    BMC Bioinformatics; 2019 Jul; 20(1):401. PubMed ID: 31324140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting gene expression from histone modifications with self-attention based neural networks and transfer learning.
    Chen Y; Xie M; Wen J
    Front Genet; 2022; 13():1081842. PubMed ID: 36588793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Long-Range Regulatory Interactions to Predict Gene Expression Using Graph Convolutional Networks.
    Bigness J; Loinaz X; Patel S; Larschan E; Singh R
    J Comput Biol; 2022 May; 29(5):409-424. PubMed ID: 35325548
    [No Abstract]   [Full Text] [Related]  

  • 18. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profiling Analysis of Histone Modifications and Gene Expression in Lewis Lung Carcinoma Murine Cells Resistant to Anti-VEGF Treatment.
    Li D; Shi J; Du Y; Chen K; Liu Z; Li B; Li J; Tao F; Gu H; Jiang C; Fang J
    PLoS One; 2016; 11(6):e0158214. PubMed ID: 27362259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data.
    Guan D; Shao J; Deng Y; Wang P; Zhao Z; Liang Y; Wang J; Yan B
    Bioinformatics; 2014 Apr; 30(8):1190-1192. PubMed ID: 24389658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.