BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 27587691)

  • 1. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.
    Neveu E; Ritchie DW; Popov P; Grudinin S
    Bioinformatics; 2016 Sep; 32(17):i693-i701. PubMed ID: 27587691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EROS-DOCK: protein-protein docking using exhaustive branch-and-bound rotational search.
    Ruiz Echartea ME; Chauvot de Beauchêne I; Ritchie DW
    Bioinformatics; 2019 Dec; 35(23):5003-5010. PubMed ID: 31125060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein docking with F(2)Dock 2.0 and GB-rerank.
    Chowdhury R; Rasheed M; Keidel D; Moussalem M; Olson A; Sanner M; Bajaj C
    PLoS One; 2013; 8(3):e51307. PubMed ID: 23483883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convex-PL: a novel knowledge-based potential for protein-ligand interactions deduced from structural databases using convex optimization.
    Kadukova M; Grudinin S
    J Comput Aided Mol Des; 2017 Oct; 31(10):943-958. PubMed ID: 28921375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accelerating and focusing protein-protein docking correlations using multi-dimensional rotational FFT generating functions.
    Ritchie DW; Kozakov D; Vajda S
    Bioinformatics; 2008 Sep; 24(17):1865-73. PubMed ID: 18591193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein docking using spherical polar Fourier correlations.
    Ritchie DW; Kemp GJ
    Proteins; 2000 May; 39(2):178-94. PubMed ID: 10737939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting protein conformational changes for unbound and homology docking: learning from intrinsic and induced flexibility.
    Chen H; Sun Y; Shen Y
    Proteins; 2017 Mar; 85(3):544-556. PubMed ID: 27862345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using restraints in EROS-DOCK improves model quality in pairwise and multicomponent protein docking.
    Ruiz Echartea ME; Ritchie DW; Chauvot de Beauchêne I
    Proteins; 2020 Aug; 88(8):1121-1128. PubMed ID: 32506478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Design of Knowledge-Based Scoring Potentials for Enrichment of Near-Native Geometries in Protein-Protein Docking.
    Sasse A; de Vries SJ; Schindler CE; de Beauchêne IC; Zacharias M
    PLoS One; 2017; 12(1):e0170625. PubMed ID: 28118389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pushing the accuracy limit of shape complementarity for protein-protein docking.
    Yan Y; Huang SY
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):696. PubMed ID: 31874620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein docking by Rotation-Based Uniform Sampling (RotBUS) with fast computing of intermolecular contact distance and residue desolvation.
    Solernou A; Fernandez-Recio J
    BMC Bioinformatics; 2010 Jun; 11():352. PubMed ID: 20584304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles.
    Grudinin S; Garkavenko M; Kazennov A
    Acta Crystallogr D Struct Biol; 2017 May; 73(Pt 5):449-464. PubMed ID: 28471369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RDOCK: refinement of rigid-body protein docking predictions.
    Li L; Chen R; Weng Z
    Proteins; 2003 Nov; 53(3):693-707. PubMed ID: 14579360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties that rank protein:protein docking poses with high accuracy.
    Simões ICM; Coimbra JTS; Neves RPP; Costa IPD; Ramos MJ; Fernandes PA
    Phys Chem Chem Phys; 2018 Aug; 20(32):20927-20942. PubMed ID: 30067268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refinement of pairwise potentials via logistic regression to score protein-protein interactions.
    Tanemura KA; Pei J; Merz KM
    Proteins; 2020 Dec; 88(12):1559-1568. PubMed ID: 32729132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and scoring of docking poses with pyDock.
    Grosdidier S; Pons C; Solernou A; Fernández-Recio J
    Proteins; 2007 Dec; 69(4):852-8. PubMed ID: 17876821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CoDockPP: A Multistage Approach for Global and Site-Specific Protein-Protein Docking.
    Kong R; Wang F; Zhang J; Wang F; Chang S
    J Chem Inf Model; 2019 Aug; 59(8):3556-3564. PubMed ID: 31276391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knowledge-guided docking: accurate prospective prediction of bound configurations of novel ligands using Surflex-Dock.
    Cleves AE; Jain AN
    J Comput Aided Mol Des; 2015 Jun; 29(6):485-509. PubMed ID: 25940276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. idDock+: Integrating Machine Learning in Probabilistic Search for Protein-Protein Docking.
    Hashmi I; Shehu A
    J Comput Biol; 2015 Sep; 22(9):806-22. PubMed ID: 26222714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.