These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27587697)

  • 1. Genome wide predictions of miRNA regulation by transcription factors.
    Ruffalo M; Bar-Joseph Z
    Bioinformatics; 2016 Sep; 32(17):i746-i754. PubMed ID: 27587697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel framework for inferring condition-specific TF and miRNA co-regulation of protein-protein interactions.
    Zhang J; Le TD; Liu L; He J; Li J
    Gene; 2016 Feb; 577(1):55-64. PubMed ID: 26611531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter- and intra-combinatorial regulation by transcription factors and microRNAs.
    Zhou Y; Ferguson J; Chang JT; Kluger Y
    BMC Genomics; 2007 Oct; 8():396. PubMed ID: 17971223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RIP: the regulatory interaction predictor--a machine learning-based approach for predicting target genes of transcription factors.
    Bauer T; Eils R; König R
    Bioinformatics; 2011 Aug; 27(16):2239-47. PubMed ID: 21690103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating full spectrum of sequence features into predicting functional microRNA-mRNA interactions.
    Wang Z; Xu W; Liu Y
    Bioinformatics; 2015 Nov; 31(21):3529-36. PubMed ID: 26130578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-transcription factor interactions and their combined effect on target gene expression in colon cancer cases.
    Mullany LE; Herrick JS; Wolff RK; Stevens JR; Samowitz W; Slattery ML
    Genes Chromosomes Cancer; 2018 Apr; 57(4):192-202. PubMed ID: 29226599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SMARTS: reconstructing disease response networks from multiple individuals using time series gene expression data.
    Wise A; Bar-Joseph Z
    Bioinformatics; 2015 Apr; 31(8):1250-7. PubMed ID: 25480376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying cancer-related microRNAs based on gene expression data.
    Zhao XM; Liu KQ; Zhu G; He F; Duval B; Richer JM; Huang DS; Jiang CJ; Hao JK; Chen L
    Bioinformatics; 2015 Apr; 31(8):1226-34. PubMed ID: 25505085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinformatics method to predict two regulation mechanism: TF-miRNA-mRNA and lncRNA-miRNA-mRNA in pancreatic cancer.
    Ye S; Yang L; Zhao X; Song W; Wang W; Zheng S
    Cell Biochem Biophys; 2014 Dec; 70(3):1849-58. PubMed ID: 25087086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring microRNA and transcription factor regulatory networks in heterogeneous data.
    Le TD; Liu L; Liu B; Tsykin A; Goodall GJ; Satou K; Li J
    BMC Bioinformatics; 2013 Mar; 14():92. PubMed ID: 23497388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated analyses to reconstruct microRNA-mediated regulatory networks in mouse liver using high-throughput profiling.
    Hsu SD; Huang HY; Chou CH; Sun YM; Hsu MT; Tsou AP
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S12. PubMed ID: 25707768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring coregulation of transcription factors and microRNAs in breast cancer.
    Wu JH; Sun YJ; Hsieh PH; Shieh GS
    Gene; 2013 Apr; 518(1):139-44. PubMed ID: 23246694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated network analysis reveals distinct regulatory roles of transcription factors and microRNAs.
    Guo Y; Alexander K; Clark AG; Grimson A; Yu H
    RNA; 2016 Nov; 22(11):1663-1672. PubMed ID: 27604961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstruction of temporal activity of microRNAs from gene expression data in breast cancer cell line.
    Jayavelu ND; Bar N
    BMC Genomics; 2015 Dec; 16():1077. PubMed ID: 26763900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide pre-miRNA discovery from few labeled examples.
    Yones C; Stegmayer G; Milone DH
    Bioinformatics; 2018 Feb; 34(4):541-549. PubMed ID: 29028911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Bayesian inference of condition-specific miRNA and transcription factor activities from combined gene and microRNA expression data.
    Zacher B; Abnaof K; Gade S; Younesi E; Tresch A; Fröhlich H
    Bioinformatics; 2012 Jul; 28(13):1714-20. PubMed ID: 22563068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Lasso regression model for the construction of microRNA-target regulatory networks.
    Lu Y; Zhou Y; Qu W; Deng M; Zhang C
    Bioinformatics; 2011 Sep; 27(17):2406-13. PubMed ID: 21743061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of microRNAs and Transcription Factors Co-Regulatory Modules by Integrating Multiple Types of Genomic Data.
    Luo J; Xiang G; Pan C
    IEEE Trans Nanobioscience; 2017 Jan; 16(1):51-59. PubMed ID: 28092569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Pri-miRNA Transcription Start Sites.
    Georgakilas G; Perdikopanis N; Hatzigeorgiou AG
    Methods Mol Biol; 2018; 1823():11-31. PubMed ID: 29959670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach.
    Pio G; Malerba D; D'Elia D; Ceci M
    BMC Bioinformatics; 2014; 15 Suppl 1(Suppl 1):S4. PubMed ID: 24564296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.