These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27587778)

  • 21. Systematic analysis of yeast strains with possible defects in lipid metabolism.
    Daum G; Tuller G; Nemec T; Hrastnik C; Balliano G; Cattel L; Milla P; Rocco F; Conzelmann A; Vionnet C; Kelly DE; Kelly S; Schweizer E; Schüller HJ; Hojad U; Greiner E; Finger K
    Yeast; 1999 May; 15(7):601-14. PubMed ID: 10341423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast on drugs: Saccharomyces cerevisiae as a tool for anticancer drug research.
    Menacho-Márquez M; Murguía JR
    Clin Transl Oncol; 2007 Apr; 9(4):221-8. PubMed ID: 17462974
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic quantification of gene interactions by phenotypic array analysis.
    Hartman JL; Tippery NP
    Genome Biol; 2004; 5(7):R49. PubMed ID: 15239834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The yeast deletion collection: a decade of functional genomics.
    Giaever G; Nislow C
    Genetics; 2014 Jun; 197(2):451-65. PubMed ID: 24939991
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A drug similarity network for understanding drug mechanism of action.
    Karabulut NP; Akhmedov M; Cokol M
    J Bioinform Comput Biol; 2014 Apr; 12(2):1441007. PubMed ID: 24712534
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Network-assisted target identification for haploinsufficiency and homozygous profiling screens.
    Wang S; Peng J
    PLoS Comput Biol; 2017 Jun; 13(6):e1005553. PubMed ID: 28574983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening the
    Parisi K; Doyle SR; Lee E; Lowe RGT; van der Weerden NL; Anderson MA; Bleackley MR
    Antimicrob Agents Chemother; 2019 Nov; 63(11):. PubMed ID: 31451498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microarray karyotyping of commercial wine yeast strains reveals shared, as well as unique, genomic signatures.
    Dunn B; Levine RP; Sherlock G
    BMC Genomics; 2005 Apr; 6():53. PubMed ID: 15833139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic chemical-genetic and chemical-chemical interaction datasets for prediction of compound synergism.
    Wildenhain J; Spitzer M; Dolma S; Jarvik N; White R; Roy M; Griffiths E; Bellows DS; Wright GD; Tyers M
    Sci Data; 2016 Nov; 3():160095. PubMed ID: 27874849
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yeast genome-wide drug-induced haploinsufficiency screen to determine drug mode of action.
    Baetz K; McHardy L; Gable K; Tarling T; Rebérioux D; Bryan J; Andersen RJ; Dunn T; Hieter P; Roberge M
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4525-30. PubMed ID: 15070751
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Construction of multidrug-sensitive yeast with high sporulation efficiency.
    Chinen T; Ota Y; Nagumo Y; Masumoto H; Usui T
    Biosci Biotechnol Biochem; 2011; 75(8):1588-93. PubMed ID: 21821930
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combining chemical genomics screens in yeast to reveal spectrum of effects of chemical inhibition of sphingolipid biosynthesis.
    Kemmer D; McHardy LM; Hoon S; Rebérioux D; Giaever G; Nislow C; Roskelley CD; Roberge M
    BMC Microbiol; 2009 Jan; 9():9. PubMed ID: 19144191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The novel equisetin-like compound, TA-289, causes aberrant mitochondrial morphology which is independent of the production of reactive oxygen species in Saccharomyces cerevisiae.
    Quek NC; Matthews JH; Bloor SJ; Jones DA; Bircham PW; Heathcott RW; Atkinson PH
    Mol Biosyst; 2013 Aug; 9(8):2125-33. PubMed ID: 23715404
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Disruption of six novel yeast genes located on chromosome II reveals one gene essential for vegetative growth and two required for sporulation and conferring hypersensitivity to various chemicals.
    Kucharczyk R; Gromadka R; Migdalski A; Slonimski PP; Rytka J
    Yeast; 1999 Jul; 15(10B):987-1000. PubMed ID: 10407278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.
    Nislow C; Wong LH; Lee AH; Giaever G
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inference of protein complex activities from chemical-genetic profile and its applications: predicting drug-target pathways.
    Han S; Kim D
    PLoS Comput Biol; 2008 Aug; 4(8):e1000162. PubMed ID: 18769708
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studying phospholipid metabolism using yeast systematic and chemical genetics.
    Fairn GD; McMaster CR
    Methods; 2005 Jun; 36(2):102-8. PubMed ID: 15893935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway.
    Thangamani S; Maland M; Mohammad H; Pascuzzi PE; Avramova L; Koehler CM; Hazbun TR; Seleem MN
    Front Cell Infect Microbiol; 2017; 7():4. PubMed ID: 28149831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel calcineurin-independent activity of cyclosporin A in Saccharomyces cerevisiae.
    Singh-Babak SD; Shekhar T; Smith AM; Giaever G; Nislow C; Cowen LE
    Mol Biosyst; 2012 Oct; 8(10):2575-84. PubMed ID: 22751784
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic profiling of drug sensitivities via induced haploinsufficiency.
    Giaever G; Shoemaker DD; Jones TW; Liang H; Winzeler EA; Astromoff A; Davis RW
    Nat Genet; 1999 Mar; 21(3):278-83. PubMed ID: 10080179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.