BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 27587839)

  • 1. Atg9A trafficking through the recycling endosomes is required for autophagosome formation.
    Imai K; Hao F; Fujita N; Tsuji Y; Oe Y; Araki Y; Hamasaki M; Noda T; Yoshimori T
    J Cell Sci; 2016 Oct; 129(20):3781-3791. PubMed ID: 27587839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SNX18 regulates ATG9A trafficking from recycling endosomes by recruiting Dynamin-2.
    Søreng K; Munson MJ; Lamb CA; Bjørndal GT; Pankiv S; Carlsson SR; Tooze SA; Simonsen A
    EMBO Rep; 2018 Apr; 19(4):. PubMed ID: 29437695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VAMP7 Regulates Autophagosome Formation by Supporting Atg9a Functions in Pancreatic β-Cells From Male Mice.
    Aoyagi K; Itakura M; Fukutomi T; Nishiwaki C; Nakamichi Y; Torii S; Makiyama T; Harada A; Ohara-Imaizumi M
    Endocrinology; 2018 Nov; 159(11):3674-3688. PubMed ID: 30215699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved glycine residue in the C-terminal region of human ATG9A is required for its transport from the endoplasmic reticulum to the Golgi apparatus.
    Staudt C; Gilis F; Tevel V; Jadot M; Boonen M
    Biochem Biophys Res Commun; 2016 Oct; 479(2):404-409. PubMed ID: 27663665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular determinants that mediate the sorting of human ATG9A from the endoplasmic reticulum.
    Staudt C; Gilis F; Boonen M; Jadot M
    Biochim Biophys Acta; 2016 Sep; 1863(9):2299-310. PubMed ID: 27316455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AP-4 mediates export of ATG9A from the
    Mattera R; Park SY; De Pace R; Guardia CM; Bonifacino JS
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):E10697-E10706. PubMed ID: 29180427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small GTPase Rab1B is associated with ATG9A vesicles and regulates autophagosome formation.
    Kakuta S; Yamaguchi J; Suzuki C; Sasaki M; Kazuno S; Uchiyama Y
    FASEB J; 2017 Sep; 31(9):3757-3773. PubMed ID: 28522593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excess sphingomyelin disturbs ATG9A trafficking and autophagosome closure.
    Corcelle-Termeau E; Vindeløv SD; Hämälistö S; Mograbi B; Keldsbo A; Bräsen JH; Favaro E; Adam D; Szyniarowski P; Hofman P; Krautwald S; Farkas T; Petersen NH; Rohde M; Linkermann A; Jäättelä M
    Autophagy; 2016 May; 12(5):833-49. PubMed ID: 27070082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of AP-4 in cargo export from the trans-Golgi network and hereditary spastic paraplegia.
    Mattera R; De Pace R; Bonifacino JS
    Biochem Soc Trans; 2020 Oct; 48(5):1877-1888. PubMed ID: 33084855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptor protein complex 4 deficiency: a paradigm of childhood-onset hereditary spastic paraplegia caused by defective protein trafficking.
    Behne R; Teinert J; Wimmer M; D'Amore A; Davies AK; Scarrott JM; Eberhardt K; Brechmann B; Chen IP; Buttermore ED; Barrett L; Dwyer S; Chen T; Hirst J; Wiesener A; Segal D; Martinuzzi A; Duarte ST; Bennett JT; Bourinaris T; Houlden H; Roubertie A; Santorelli FM; Robinson M; Azzouz M; Lipton JO; Borner GHH; Sahin M; Ebrahimi-Fakhari D
    Hum Mol Genet; 2020 Jan; 29(2):320-334. PubMed ID: 31915823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ.
    Judith D; Jefferies HBJ; Boeing S; Frith D; Snijders AP; Tooze SA
    J Cell Biol; 2019 May; 218(5):1634-1652. PubMed ID: 30917996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axonal autophagosome maturation defect through failure of ATG9A sorting underpins pathology in AP-4 deficiency syndrome.
    Ivankovic D; Drew J; Lesept F; White IJ; López Doménech G; Tooze SA; Kittler JT
    Autophagy; 2020 Mar; 16(3):391-407. PubMed ID: 31142229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A.
    Davies AK; Itzhak DN; Edgar JR; Archuleta TL; Hirst J; Jackson LP; Robinson MS; Borner GHH
    Nat Commun; 2018 Sep; 9(1):3958. PubMed ID: 30262884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy.
    Shirahama-Noda K; Kira S; Yoshimori T; Noda T
    J Cell Sci; 2013 Nov; 126(Pt 21):4963-73. PubMed ID: 23986483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phosphatidylinositol 3-phosphate-binding protein SNX4 controls ATG9A recycling and autophagy.
    Ravussin A; Brech A; Tooze SA; Stenmark H
    J Cell Sci; 2021 Feb; 134(3):. PubMed ID: 33468622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atg9 proteins, not so different after all.
    Ungermann C; Reggiori F
    Autophagy; 2018; 14(8):1456-1459. PubMed ID: 29966469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atg27 tyrosine sorting motif is important for its trafficking and Atg9 localization.
    Segarra VA; Boettner DR; Lemmon SK
    Traffic; 2015 Apr; 16(4):365-78. PubMed ID: 25557545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mammalian autophagy and the plasma membrane.
    Pavel M; Rubinsztein DC
    FEBS J; 2017 Mar; 284(5):672-679. PubMed ID: 27758042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A.
    Maeda S; Yamamoto H; Kinch LN; Garza CM; Takahashi S; Otomo C; Grishin NV; Forli S; Mizushima N; Otomo T
    Nat Struct Mol Biol; 2020 Dec; 27(12):1194-1201. PubMed ID: 33106659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery.
    Guardia CM; Jain A; Mattera R; Friefeld A; Li Y; Bonifacino JS
    Mol Biol Cell; 2021 Nov; 32(21):ar25. PubMed ID: 34432492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.