BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2758799)

  • 21. Surface coil phosphorus-31 nuclear magnetic resonance studies of the intact eye.
    Schleich T; Matson GB; Willis JA; Acosta G; Serdahl C; Campbell P; Garwood M
    Exp Eye Res; 1985 Mar; 40(3):343-55. PubMed ID: 4065231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The role of various cycles of the catabolism of glucose in the production of adenosine triphosphate of the crystalline lens. Study in vitro].
    KLETHI J; MANDEL P
    C R Hebd Seances Acad Sci; 1961 Oct; 253():1878-9. PubMed ID: 14456901
    [No Abstract]   [Full Text] [Related]  

  • 23. Modelling cortical cataractogenesis. 13. Early effects on lens ATP/ADP and glutathione in the streptozotocin rat model of the diabetic cataract.
    Mitton KP; Dean PA; Dzialoszynski T; Xiong H; Sanford SE; Trevithick JR
    Exp Eye Res; 1993 Feb; 56(2):187-98. PubMed ID: 8462652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [ATP-forming capacity in extracts of lenses of young and old animals].
    AYBERK N; HOCKWIN O; KLEIFELD O
    Albrecht Von Graefes Arch Ophthalmol; 1956; 158(1):34-8. PubMed ID: 13372472
    [No Abstract]   [Full Text] [Related]  

  • 25. The effect of high glucose and oxidative stress on lens metabolism, aldose reductase, and senile cataractogenesis.
    Cheng HM; González RG
    Metabolism; 1986 Apr; 35(4 Suppl 1):10-4. PubMed ID: 3083198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of the slow calcium-channel blocker verapamil on phosphatic metabolism of crystalline lens.
    Greiner JV; Glonek T
    Exp Eye Res; 1988 Feb; 46(2):139-48. PubMed ID: 3350061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relative contributions of epithelial cells and fibers to rabbit lens ATP content and glycolysis.
    Winkler BS; Riley MV
    Invest Ophthalmol Vis Sci; 1991 Aug; 32(9):2593-8. PubMed ID: 1869412
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of concurrent glucose consumption by the hexose monophosphate shunt, glycolysis, and the polyol pathway in the crystalline lens.
    Cheng HM; Xiong J; Tanaka G; Chang C; Asterlin AA; Aguayo JB
    Exp Eye Res; 1991 Sep; 53(3):363-6. PubMed ID: 1936172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulating rat lens glucose metabolism with exogenous substrates.
    Cheng HM; Cheng FY; Tanaka GH; Xiong J; Pfleiderer B
    Exp Eye Res; 1995 Oct; 61(4):479-86. PubMed ID: 8549689
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in lens organophosphate metabolites in response to endotoxin-induced uveitis.
    Igarashi H; Yoshida A; Tanaka K; Cheng HM
    Ophthalmic Res; 1995; 27(1):12-7. PubMed ID: 7596554
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ATP hydrolysis kinetics of Na,K-ATPase in cataract.
    Garner MH; Spector A
    Exp Eye Res; 1986 Apr; 42(4):339-48. PubMed ID: 3011482
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biological response in various compartments of the rat lens after in vivo exposure to UVR-B analyzed by HR-MAS 1H NMR spectroscopy.
    Tessem MB; Bathen TF; Löfgren S; Saether O; Mody V; Meyer L; Dong X; Söderberg PG; Midelfart A
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5404-11. PubMed ID: 17122130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):613-24. PubMed ID: 7076407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The utilization of 13C and 31P nuclear magnetic resonance spectroscopy in the study of the sorbitol pathway and aldose reductase inhibition in intact rabbit lenses.
    Williams WF; Odom JD
    Exp Eye Res; 1987 Jun; 44(6):717-30. PubMed ID: 3115803
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of lens glycolysis.
    Lou MF; Kinoshita JH
    Biochim Biophys Acta; 1967 Aug; 141(3):547-59. PubMed ID: 4227814
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolic changes during cataract formation by ultraviolet radiation in the incubated rabbit lens.
    Kato Y; Igarashi H; Kanno H; Tanaka K; Yoshida A
    Hokkaido Igaku Zasshi; 2009 Nov; 84(6):423-30. PubMed ID: 19998718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aldose reductase inhibition and the phosphorus-31 profile of the intact diabetic rat lens.
    Tsubota K; Yoshida M; Toda T; Ono M; Kajiwara K; Cheng HM
    Ophthalmic Res; 1993; 25(6):393-9. PubMed ID: 8309679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nature and localization of avian lens glycogen by electron microscopy and Raman spectroscopy.
    Castillo CG; Lo WK; Kuck JF; Yu NT
    Biophys J; 1992 Apr; 61(4):839-44. PubMed ID: 1581498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning.
    Schaefer S; Carr LJ; Prussel E; Ramasamy R
    Am J Physiol; 1995 Mar; 268(3 Pt 2):H935-44. PubMed ID: 7900892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of phospholine iodide on energy metabolites of the rabbit lens.
    Härkönen M; Tarkkanen A
    Exp Eye Res; 1970 Jul; 10(1):1-7. PubMed ID: 5456776
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.