These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2758799)

  • 41. Longitudinal (T1) relaxation times of phosphorus metabolites in the bovine and rabbit lens.
    Schleich T; Willis JA; Matson GB
    Exp Eye Res; 1984 Oct; 39(4):455-68. PubMed ID: 6499960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Organophosphate metabolic changes in the rat lens during the development of galactose-induced cataract.
    Sakagami K; Igarashi H; Tanaka K; Yoshida A
    Hokkaido Igaku Zasshi; 1999 Nov; 74(6):457-66. PubMed ID: 10642892
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in the energy metabolism of cultured lens epithelial cells in comparison with the fresh lens.
    Piper HM; Spahr R; Krützfeldt A; Siegmund B; Schwartz P; Pau H
    Exp Eye Res; 1990 Aug; 51(2):131-8. PubMed ID: 2117546
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stability of mammalian lens phosphofructokinase.
    Cheng HM; Chylack LT; Chien J; Barañano EC
    Invest Ophthalmol Vis Sci; 1977 Feb; 16(2):126-34. PubMed ID: 13048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Metabolic changes of aldose and phosphorus metabolites in incubated rabbit lenses--effects of aldose reductase inhibitor].
    Nakamura J; Itoh S; Kani K; Okamoto R
    Nippon Ganka Gakkai Zasshi; 1998 Sep; 102(9):561-9. PubMed ID: 9785852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dynamic changes in the organophosphate profile upon treatment of the crystalline lens with dexamethasone.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):14-22. PubMed ID: 7085218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of respiration in the energy metabolism of the bovine lens.
    Trayhurn P; Van Heyningen R
    Biochem J; 1972 Sep; 129(2):507-9. PubMed ID: 4643337
    [No Abstract]   [Full Text] [Related]  

  • 48. Time-dependent effect of ethanol force-feeding on glycogen repletion: NMR evidence of a link with ATP turnover in rat liver.
    Beauvieux MC; Gin H; Roumes H; Kassem C; Couzigou P; Gallis JL
    Alcohol; 2015 Sep; 49(6):607-15. PubMed ID: 26254966
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleotide levels in human and bovine lenses: a study on regional postmortem changes.
    Pau H; Deussen A
    Ophthalmic Res; 1990; 22(1):45-50. PubMed ID: 2342778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of calcium on the rabbit lens sodium pump.
    Delamere NA; Paterson CA; Borchman D; Manning RE
    Invest Ophthalmol Vis Sci; 1993 Feb; 34(2):405-12. PubMed ID: 8382668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Oxidative damage to human lens epithelial cells in culture: estrogen protection of mitochondrial potential, ATP, and cell viability.
    Wang X; Simpkins JW; Dykens JA; Cammarata PR
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):2067-75. PubMed ID: 12714645
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Supplementing glucose metabolism in human senile cataracts.
    Cheng HM; Chylack LT; von Saltza I
    Invest Ophthalmol Vis Sci; 1981 Dec; 21(6):812-8. PubMed ID: 6458578
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differences in nucleotide compartmentation and energy state in isolated and in situ rat heart: assessment by 31P-NMR spectroscopy.
    Williams JP; Headrick JP
    Biochim Biophys Acta; 1996 Aug; 1276(1):71-9. PubMed ID: 8764892
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The metabolic consequences of an increase in the frequency of stimulation in isolated ferret hearts.
    Elliott AC; Smith GL; Allen DG
    J Physiol; 1994 Jan; 474(1):147-59. PubMed ID: 8014891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nucleotide levels in human lens: regional distribution in different forms of senile cataract.
    Deussen A; Pau H
    Exp Eye Res; 1989 Jan; 48(1):37-47. PubMed ID: 2920783
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Adenosinetriphosphatasic and hexokinasic activity of crystalline lenses of rabbits exposed to local x-irradiation].
    MANDEL P; SCHMITT ML
    Experientia; 1956 Jun; 12(6):223-4. PubMed ID: 13330802
    [No Abstract]   [Full Text] [Related]  

  • 57. Some processes of energy saving and expenditure occurring during ethanol perfusion in the isolated liver of fed rats; a Nuclear Magnetic Resonance study.
    Beauvieux MC; Couzigou P; Gin H; Canioni P; Gallis JL
    BMC Physiol; 2004 Mar; 4():3. PubMed ID: 15053831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The presence of glycogen in lenses of different species.
    Hockwin O
    Exp Eye Res; 1973 Feb; 15(2):235-44. PubMed ID: 4692236
    [No Abstract]   [Full Text] [Related]  

  • 59. Interspecies variations in mammalian lens metabolites as detected by phosphorus-31 nuclear magnetic resonance.
    Kopp SJ; Glonek T; Greiner JV
    Science; 1982 Mar; 215(4540):1622-5. PubMed ID: 7071581
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy.
    Palmisano DV; Groth-Vasselli B; Farnsworth PN; Reddy MC
    Biochim Biophys Acta; 1995 Jan; 1246(1):91-7. PubMed ID: 7811736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.