BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 27588016)

  • 1. Transcriptome Analysis Reveals the Genetic Basis of the Resveratrol Biosynthesis Pathway in an Endophytic Fungus (Alternaria sp. MG1) Isolated from Vitis vinifera.
    Che J; Shi J; Gao Z; Zhang Y
    Front Microbiol; 2016; 7():1257. PubMed ID: 27588016
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1.
    Lu Y; Ye C; Che J; Xu X; Shao D; Jiang C; Liu Y; Shi J
    Microb Cell Fact; 2019 Jan; 18(1):13. PubMed ID: 30678677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of reference genes for normalization of gene expression by qRT-PCR in a resveratrol-producing entophytic fungus (Alternaria sp. MG1).
    Che JX; Shi JL; Lu Y; Liu YL
    AMB Express; 2016 Dec; 6(1):106. PubMed ID: 27826948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolomics Reveals the Response of the Phenylpropanoid Biosynthesis Pathway to Starvation Treatment in the Grape Endophyte
    Lu Y; Che J; Xu X; Pang B; Zhao X; Liu Y; Shi J
    J Agric Food Chem; 2020 Jan; 68(4):1126-1135. PubMed ID: 31891261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification, and optimal cultivation conditions for resveratrol production.
    Shi J; Zeng Q; Liu Y; Pan Z
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):369-79. PubMed ID: 22526800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome sequence analysis of an ornamental plant, Ananas comosus var. bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis.
    Ma J; Kanakala S; He Y; Zhang J; Zhong X
    PLoS One; 2015; 10(3):e0119153. PubMed ID: 25769053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the Biosynthesis of Resveratrol in Endophytic Fungus (
    Lu Y; Shi J; Zhao X; Song Y; Qin Y; Liu Y
    Front Microbiol; 2021; 12():770734. PubMed ID: 34745078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequencing and de novo assembly of the Asian gypsy moth transcriptome using the Illumina platform.
    Xiaojun F; Chun Y; Jianhong L; Chang Z; Yao L
    Genet Mol Biol; 2017; 40(1):160-167. PubMed ID: 27768153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate.
    Liu H; Wu W; Hou K; Chen J; Zhao Z
    Mol Genet Genomics; 2016 Feb; 291(1):337-48. PubMed ID: 26342927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconversion of resveratrol using resting cells of non-genetically modified Alternaria sp.
    Zhang J; Shi J; Liu Y
    Biotechnol Appl Biochem; 2013; 60(2):236-43. PubMed ID: 23586428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential application of CHS and 4CL genes from grape endophytic fungus in production of naringenin and resveratrol and the improvement of polyphenol profiles and flavour of wine.
    Lu Y; Song Y; Zhu J; Xu X; Pang B; Jin H; Jiang C; Liu Y; Shi J
    Food Chem; 2021 Jun; 347():128972. PubMed ID: 33453581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Approach to Produce Resveratrol by Enzymatic Bioconversion.
    Che J; Shi J; Gao Z; Zhang Y
    J Microbiol Biotechnol; 2016 Aug; 26(8):1348-57. PubMed ID: 27116990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De Novo Assembly and Annotation of the Chinese Chive (Allium tuberosum Rottler ex Spr.) Transcriptome Using the Illumina Platform.
    Zhou SM; Chen LM; Liu SQ; Wang XF; Sun XD
    PLoS One; 2015; 10(7):e0133312. PubMed ID: 26204518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo assembly and characterization of farmed blue fox (Alopex lagopus) global transcriptome using Illumina paired-end sequencing.
    Guo PC; Yan SQ; Si S; Bai CY; Zhao Y; Zhang Y; Yao JY; Li YM
    Genet Mol Res; 2016 Mar; 15(1):. PubMed ID: 27051000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo transcriptome analysis of Rhododendron molle G. Don flowers by Illumina sequencing.
    Xiao Z; Su J; Sun X; Li C; He L; Cheng S; Liu X
    Genes Genomics; 2018 Jun; 40(6):591-601. PubMed ID: 29892944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly and characterization of the Welsh onion (Allium fistulosum L.) transcriptome using Illumina technology.
    Sun XD; Yu XH; Zhou SM; Liu SQ
    Mol Genet Genomics; 2016 Apr; 291(2):647-59. PubMed ID: 26515796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis.
    Castro JC; Maddox JD; Cobos M; Requena D; Zimic M; Bombarely A; Imán SA; Cerdeira LA; Medina AE
    BMC Genomics; 2015 Nov; 16():997. PubMed ID: 26602763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo assembly and characterization of the transcriptome of the pancreatic fluke Eurytrema pancreaticum (trematoda: Dicrocoeliidae) using Illumina paired-end sequencing.
    Liu GH; Xu MJ; Song HQ; Wang CR; Zhu XQ
    Gene; 2016 Jan; 576(1 Pt 2):333-8. PubMed ID: 26494161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.