These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 27588494)

  • 1. Bone marrow adipocytes promote the Warburg phenotype in metastatic prostate tumors via HIF-1α activation.
    Diedrich JD; Rajagurubandara E; Herroon MK; Mahapatra G; Hüttemann M; Podgorski I
    Oncotarget; 2016 Oct; 7(40):64854-64877. PubMed ID: 27588494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone marrow adipocytes promote tumor growth in bone via FABP4-dependent mechanisms.
    Herroon MK; Rajagurubandara E; Hardaway AL; Powell K; Turchick A; Feldmann D; Podgorski I
    Oncotarget; 2013 Nov; 4(11):2108-23. PubMed ID: 24240026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PRKAR2B-HIF-1α loop promotes aerobic glycolysis and tumour growth in prostate cancer.
    Xia L; Sun J; Xie S; Chi C; Zhu Y; Pan J; Dong B; Huang Y; Xia W; Sha J; Xue W
    Cell Prolif; 2020 Nov; 53(11):e12918. PubMed ID: 33025691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostate Tumor Cell-Derived IL1β Induces an Inflammatory Phenotype in Bone Marrow Adipocytes and Reduces Sensitivity to Docetaxel via Lipolysis-Dependent Mechanisms.
    Herroon MK; Diedrich JD; Rajagurubandara E; Martin C; Maddipati KR; Kim S; Heath EI; Granneman J; Podgorski I
    Mol Cancer Res; 2019 Dec; 17(12):2508-2521. PubMed ID: 31562254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate cancer extracellular vesicles mediate intercellular communication with bone marrow cells and promote metastasis in a cholesterol-dependent manner.
    Henrich SE; McMahon KM; Plebanek MP; Calvert AE; Feliciano TJ; Parrish S; Tavora F; Mega A; De Souza A; Carneiro BA; Thaxton CS
    J Extracell Vesicles; 2020 Dec; 10(2):e12042. PubMed ID: 33408816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ERRα augments HIF-1 signalling by directly interacting with HIF-1α in normoxic and hypoxic prostate cancer cells.
    Zou C; Yu S; Xu Z; Wu D; Ng CF; Yao X; Yew DT; Vanacker JM; Chan FL
    J Pathol; 2014 May; 233(1):61-73. PubMed ID: 24425001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Lipid Side of Bone Marrow Adipocytes: How Tumor Cells Adapt and Survive in Bone.
    Diedrich JD; Herroon MK; Rajagurubandara E; Podgorski I
    Curr Osteoporos Rep; 2018 Aug; 16(4):443-457. PubMed ID: 29869753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone marrow-derived mesenchymal stem cells induced by inflammatory cytokines produce angiogenetic factors and promote prostate cancer growth.
    Yang KQ; Liu Y; Huang QH; Mo N; Zhang QY; Meng QG; Cheng JW
    BMC Cancer; 2017 Dec; 17(1):878. PubMed ID: 29268703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marrow adipocyte-derived CXCL1 and CXCL2 contribute to osteolysis in metastatic prostate cancer.
    Hardaway AL; Herroon MK; Rajagurubandara E; Podgorski I
    Clin Exp Metastasis; 2015 Apr; 32(4):353-68. PubMed ID: 25802102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1α in adipocytes.
    Kihira Y; Yamano N; Izawa-Ishizawa Y; Ishizawa K; Ikeda Y; Tsuchiya K; Tamaki T; Tomita S
    Int J Biochem Cell Biol; 2011 Nov; 43(11):1602-11. PubMed ID: 21810481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinome-wide functional genomics screen reveals a novel mechanism of TNFα-induced nuclear accumulation of the HIF-1α transcription factor in cancer cells.
    Schoolmeesters A; Brown DD; Fedorov Y
    PLoS One; 2012; 7(2):e31270. PubMed ID: 22355351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin-dependent kinase inhibitor, P276-00, inhibits HIF-1α and induces G2/M arrest under hypoxia in prostate cancer cells.
    Manohar SM; Padgaonkar AA; Jalota-Badhwar A; Rao SV; Joshi KS
    Prostate Cancer Prostatic Dis; 2012 Mar; 15(1):15-27. PubMed ID: 22083267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silibinin inhibits hypoxia-induced HIF-1α-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics.
    Deep G; Kumar R; Nambiar DK; Jain AK; Ramteke AM; Serkova NJ; Agarwal C; Agarwal R
    Mol Carcinog; 2017 Mar; 56(3):833-848. PubMed ID: 27533043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic Hydrocarbon Receptor Suppresses Prostate Cancer Bone Metastasis Cells-Induced Vasculogenesis of Endothelial Progenitor Cells under Hypoxia.
    Huang S; Guo Y; Jacobi A; Li Z; Huang S; He J; Liu X; Tang Y
    Cell Physiol Biochem; 2016; 39(2):709-20. PubMed ID: 27448695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transglutaminase 2 reprogramming of glucose metabolism in mammary epithelial cells via activation of inflammatory signaling pathways.
    Kumar S; Donti TR; Agnihotri N; Mehta K
    Int J Cancer; 2014 Jun; 134(12):2798-807. PubMed ID: 24477458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear co-localization and functional interaction of COX-2 and HIF-1α characterize bone metastasis of human breast carcinoma.
    Maroni P; Matteucci E; Luzzati A; Perrucchini G; Bendinelli P; Desiderio MA
    Breast Cancer Res Treat; 2011 Sep; 129(2):433-50. PubMed ID: 21069452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors.
    Leung E; Cairns RA; Chaudary N; Vellanki RN; Kalliomaki T; Moriyama EH; Mujcic H; Wilson BC; Wouters BG; Hill R; Milosevic M
    BMC Cancer; 2017 Jun; 17(1):418. PubMed ID: 28619042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of glycolysis in brown adipocytes by HIF-1α.
    Basse AL; Isidor MS; Winther S; Skjoldborg NB; Murholm M; Andersen ES; Pedersen SB; Wolfrum C; Quistorff B; Hansen JB
    Sci Rep; 2017 Jun; 7(1):4052. PubMed ID: 28642579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ROS/STAT3/HIF-1α signaling cascade mediates EGF-induced TWIST1 expression and prostate cancer cell invasion.
    Cho KH; Choi MJ; Jeong KJ; Kim JJ; Hwang MH; Shin SC; Park CG; Lee HY
    Prostate; 2014 May; 74(5):528-36. PubMed ID: 24435707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.