These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27588872)

  • 1. Interaction-Induced Dirac Fermions from Quadratic Band Touching in Bilayer Graphene.
    Pujari S; Lang TC; Murthy G; Kaul RK
    Phys Rev Lett; 2016 Aug; 117(8):086404. PubMed ID: 27588872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiferromagnetism in the Hubbard model on the Bernal-stacked honeycomb bilayer.
    Lang TC; Meng ZY; Scherer MM; Uebelacker S; Assaad FF; Muramatsu A; Honerkamp C; Wessel S
    Phys Rev Lett; 2012 Sep; 109(12):126402. PubMed ID: 23005964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallic and Deconfined Quantum Criticality in Dirac Systems.
    Liu ZH; Vojta M; Assaad FF; Janssen L
    Phys Rev Lett; 2022 Feb; 128(8):087201. PubMed ID: 35275685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Monte Carlo Simulation of the Chiral Heisenberg Gross-Neveu-Yukawa Phase Transition with a Single Dirac Cone.
    Lang TC; Läuchli AM
    Phys Rev Lett; 2019 Sep; 123(13):137602. PubMed ID: 31697507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confinement transition of ℤ
    Gazit S; Assaad FF; Sachdev S; Vishwanath A; Wang C
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):E6987-E6995. PubMed ID: 29987049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Valence Bond Orders at Charge Neutrality in a Possible Two-Orbital Extended Hubbard Model for Twisted Bilayer Graphene.
    Da Liao Y; Meng ZY; Xu XY
    Phys Rev Lett; 2019 Oct; 123(15):157601. PubMed ID: 31702323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chiral Ising Gross-Neveu Criticality of a Single Dirac Cone: A Quantum Monte Carlo Study.
    Tabatabaei SM; Negari AR; Maciejko J; Vaezi A
    Phys Rev Lett; 2022 Jun; 128(22):225701. PubMed ID: 35714234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Hermitian Strongly Interacting Dirac Fermions.
    Yu XJ; Pan Z; Xu L; Li ZX
    Phys Rev Lett; 2024 Mar; 132(11):116503. PubMed ID: 38563924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competing Nodal d-Wave Superconductivity and Antiferromagnetism.
    Xu XY; Grover T
    Phys Rev Lett; 2021 May; 126(21):217002. PubMed ID: 34114851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexisting massive and massless Dirac fermions in symmetry-broken bilayer graphene.
    Kim KS; Walter AL; Moreschini L; Seyller T; Horn K; Rotenberg E; Bostwick A
    Nat Mater; 2013 Oct; 12(10):887-92. PubMed ID: 23892785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons.
    Chen C; Xu XY; Meng ZY; Hohenadler M
    Phys Rev Lett; 2019 Feb; 122(7):077601. PubMed ID: 30848656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass transition of a particle in a random potential, front selection in nonlinear renormalization group, and entropic phenomena in Liouville and sinh-Gordon models.
    Carpentier D; Le Doussal P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026110. PubMed ID: 11308545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Criticality of Antiferromagnetism and Superconductivity with Relativity.
    Liu H; Huffman E; Chandrasekharan S; Kaul RK
    Phys Rev Lett; 2022 Mar; 128(11):117202. PubMed ID: 35363026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Superconductivity on the brink of spin-charge order in a doped honeycomb bilayer.
    Vafek O; Murray JM; Cvetkovic V
    Phys Rev Lett; 2014 Apr; 112(14):147002. PubMed ID: 24766005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum magnetism of topologically-designed graphene nanoribbons.
    Zhu X; Guo H; Feng S
    J Phys Condens Matter; 2019 Dec; 31(50):505601. PubMed ID: 31469096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Order in the Holstein Model on a Honeycomb Lattice.
    Zhang YX; Chiu WT; Costa NC; Batrouni GG; Scalettar RT
    Phys Rev Lett; 2019 Feb; 122(7):077602. PubMed ID: 30848616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Band structures of bilayer graphene superlattices.
    Killi M; Wu S; Paramekanti A
    Phys Rev Lett; 2011 Aug; 107(8):086801. PubMed ID: 21929188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical structure and emergent symmetry of Dirac fermion systems.
    Zhou J
    J Phys Condens Matter; 2022 Jun; 34(32):. PubMed ID: 35654028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dirac Fermions with Competing Orders: Non-Landau Transition with Emergent Symmetry.
    Sato T; Hohenadler M; Assaad FF
    Phys Rev Lett; 2017 Nov; 119(19):197203. PubMed ID: 29219508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deconfined criticality: generic first-order transition in the SU(2) symmetry case.
    Kuklov AB; Matsumoto M; Prokof'ev NV; Svistunov BV; Troyer M
    Phys Rev Lett; 2008 Aug; 101(5):050405. PubMed ID: 18764379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.