These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27588879)

  • 41. Magnon Landau Levels and Spin Responses in Antiferromagnets.
    Li B; Kovalev AA
    Phys Rev Lett; 2020 Dec; 125(25):257201. PubMed ID: 33416360
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chirality-Dependent Transmission of Spin Waves through Domain Walls.
    Buijnsters FJ; Ferreiros Y; Fasolino A; Katsnelson MI
    Phys Rev Lett; 2016 Apr; 116(14):147204. PubMed ID: 27104725
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Defect-Engineered Dzyaloshinskii-Moriya Interaction and Electric-Field-Switchable Topological Spin Texture in SrRuO
    Lu J; Si L; Zhang Q; Tian C; Liu X; Song C; Dong S; Wang J; Cheng S; Qu L; Zhang K; Shi Y; Huang H; Zhu T; Mi W; Zhong Z; Gu L; Held K; Wang L; Zhang J
    Adv Mater; 2021 Aug; 33(33):e2102525. PubMed ID: 34223676
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnonic Metamaterials for Spin-Wave Control with Inhomogeneous Dzyaloshinskii-Moriya Interactions.
    Zhuo F; Li H; Cheng Z; Manchon A
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407277
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Strain Induced Vortex Core Switching in Planar Magnetostrictive Nanostructures.
    Ostler TA; Cuadrado R; Chantrell RW; Rushforth AW; Cavill SA
    Phys Rev Lett; 2015 Aug; 115(6):067202. PubMed ID: 26296129
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure.
    Wang Y; Wang L; Xia J; Lai Z; Tian G; Zhang X; Hou Z; Gao X; Mi W; Feng C; Zeng M; Zhou G; Yu G; Wu G; Zhou Y; Wang W; Zhang XX; Liu J
    Nat Commun; 2020 Jul; 11(1):3577. PubMed ID: 32681004
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic vortex-antivortex interaction in a single cross-tie wall.
    Kuepper K; Buess M; Raabe J; Quitmann C; Fassbender J
    Phys Rev Lett; 2007 Oct; 99(16):167202. PubMed ID: 17995285
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic Damping and Dzyaloshinskii-Moriya Interactions in Pt/Co
    Challab N; Roussigné Y; Chérif SM; Gabor M; Belmeguenai M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837017
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The inverse thermal spin-orbit torque and the relation of the Dzyaloshinskii-Moriya interaction to ground-state energy currents.
    Freimuth F; Blügel S; Mokrousov Y
    J Phys Condens Matter; 2016 Aug; 28(31):316001. PubMed ID: 27301682
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vortex-antivortex nucleation in magnetically nanotextured superconductors: magnetic-field-driven and thermal scenarios.
    Milosević MV; Peeters FM
    Phys Rev Lett; 2005 Jun; 94(22):227001. PubMed ID: 16090426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermal stability and topological protection of skyrmions in nanotracks.
    Cortés-Ortuño D; Wang W; Beg M; Pepper RA; Bisotti MA; Carey R; Vousden M; Kluyver T; Hovorka O; Fangohr H
    Sci Rep; 2017 Jun; 7(1):4060. PubMed ID: 28642570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs.
    Aldulaimi WAS; Okatan MB; Sendur K; Onbasli MC; Misirlioglu IB
    Nanoscale; 2023 Jan; 15(2):707-717. PubMed ID: 36516064
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii-Moriya interactions.
    Hoffmann M; Zimmermann B; Müller GP; Schürhoff D; Kiselev NS; Melcher C; Blügel S
    Nat Commun; 2017 Aug; 8(1):308. PubMed ID: 28827700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of chiral solitons driven by polarized currents in monoaxial helimagnets.
    Laliena V; Bustingorry S; Campo J
    Sci Rep; 2020 Nov; 10(1):20430. PubMed ID: 33235328
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Theory of skyrmions in bilayer systems.
    Koshibae W; Nagaosa N
    Sci Rep; 2017 Feb; 7():42645. PubMed ID: 28198436
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic origin of vortex core switching in soft magnetic nanodots.
    Guslienko KY; Lee KS; Kim SK
    Phys Rev Lett; 2008 Jan; 100(2):027203. PubMed ID: 18232915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chiral magnetic order at surfaces driven by inversion asymmetry.
    Bode M; Heide M; von Bergmann K; Ferriani P; Heinze S; Bihlmayer G; Kubetzka A; Pietzsch O; Blügel S; Wiesendanger R
    Nature; 2007 May; 447(7141):190-3. PubMed ID: 17495922
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Creating an artificial two-dimensional Skyrmion crystal by nanopatterning.
    Sun L; Cao RX; Miao BF; Feng Z; You B; Wu D; Zhang W; Hu A; Ding HF
    Phys Rev Lett; 2013 Apr; 110(16):167201. PubMed ID: 23679635
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Chirality from interfacial spin-orbit coupling effects in magnetic bilayers.
    Kim KW; Lee HW; Lee KJ; Stiles MD
    Phys Rev Lett; 2013 Nov; 111(21):216601. PubMed ID: 24313509
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain.
    Chen G; N'Diaye AT; Kang SP; Kwon HY; Won C; Wu Y; Qiu ZQ; Schmid AK
    Nat Commun; 2015 Mar; 6():6598. PubMed ID: 25798953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.