These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27589222)

  • 1. Primary metabolic profiling of Egyptian broomrape (Phelipanche aegyptiaca) compared to its host tomato roots.
    Hacham Y; Hershenhorn J; Dor E; Amir R
    J Plant Physiol; 2016 Oct; 205():11-19. PubMed ID: 27589222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp.
    Dor E; Yoneyama K; Wininger S; Kapulnik Y; Yoneyama K; Koltai H; Xie X; Hershenhorn J
    Phytopathology; 2011 Feb; 101(2):213-22. PubMed ID: 20942651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Egyptian Broomrape in Processing Tomato: A Summary of 20 Years of Research and Successful Implementation.
    Eizenberg H; Goldwasser Y
    Plant Dis; 2018 Aug; 102(8):1477-1488. PubMed ID: 30673429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pomegranate (Punica granatum) as Host of the Broomrapes Phelipanche aegyptiaca and Orobanche crenata in Israel.
    Dor E; Aly R; Hershenhorn J
    Plant Dis; 2014 Jun; 98(6):859. PubMed ID: 30708642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions.
    Venezian A; Dor E; Achdari G; Plakhine D; Smirnov E; Hershenhorn J
    Front Plant Sci; 2017; 8():691. PubMed ID: 28559897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Host-Induced Silencing of Some Important Genes Involved in Osmoregulation of Parasitic Plant Phelipanche aegyptiaca.
    Farrokhi Z; Alizadeh H; Alizadeh H; Mehrizi FA
    Mol Biotechnol; 2019 Dec; 61(12):929-937. PubMed ID: 31564035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-chemical Control of Root Parasitic Weeds with Biochar.
    Eizenberg H; Plakhine D; Ziadne H; Tsechansky L; Graber ER
    Front Plant Sci; 2017; 8():939. PubMed ID: 28638393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9-mediated mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in tomato provides resistance against the parasitic weed Phelipanche aegyptiaca.
    Bari VK; Nassar JA; Kheredin SM; Gal-On A; Ron M; Britt A; Steele D; Yoder J; Aly R
    Sci Rep; 2019 Aug; 9(1):11438. PubMed ID: 31391538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted mutagenesis of two homologous ATP-binding cassette subfamily G (ABCG) genes in tomato confers resistance to parasitic weed Phelipanche aegyptiaca.
    Bari VK; Nassar JA; Meir A; Aly R
    J Plant Res; 2021 May; 134(3):585-597. PubMed ID: 33704586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imazapic Herbigation for Egyptian Broomrape (
    Goldwasser Y; Rabinovitz O; Gerstl Z; Nasser A; Paporisch A; Kuzikaro H; Sibony M; Rubin B
    Plants (Basel); 2021 Jun; 10(6):. PubMed ID: 34200674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cucumber Mosaic Virus as a carotenoid inhibitor reducing Phelipanche aegyptiaca infection in tobacco plants.
    Ibdah M; Dubey NK; Eizenberg H; Dabour Z; Abu-Nassar J; Gal-On A; Aly R
    Plant Signal Behav; 2014; 9(10):e972146. PubMed ID: 25482816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planteose as a storage carbohydrate required for early stage of germination of Orobanche minor and its metabolism as a possible target for selective control.
    Wakabayashi T; Joseph B; Yasumoto S; Akashi T; Aoki T; Harada K; Muranaka S; Bamba T; Fukusaki E; Takeuchi Y; Yoneyama K; Muranaka T; Sugimoto Y; Okazawa A
    J Exp Bot; 2015 Jun; 66(11):3085-97. PubMed ID: 25821071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Host-Parasite-Bacteria Triangle: The Microbiome of the Parasitic Weed
    Iasur Kruh L; Lahav T; Abu-Nassar J; Achdari G; Salami R; Freilich S; Aly R
    Front Plant Sci; 2017; 8():269. PubMed ID: 28298918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic Investigation of
    Nativ N; Hacham Y; Hershenhorn J; Dor E; Amir R
    Front Plant Sci; 2017; 8():491. PubMed ID: 28439279
    [No Abstract]   [Full Text] [Related]  

  • 15. Developmental patterns of enzyme activity, gene expression, and sugar content in sucrose metabolism of two broomrape species.
    Farrokhi Z; Alizadeh H; Alizadeh H
    Plant Physiol Biochem; 2019 Sep; 142():8-14. PubMed ID: 31247445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary Effects of Glyphosate Action in
    Shilo T; Rubin B; Plakhine D; Gal S; Amir R; Hacham Y; Wolf S; Eizenberg H
    Front Plant Sci; 2017; 8():255. PubMed ID: 28289424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species.
    Fernández-Aparicio M; Flores F; Rubiales D
    Ann Bot; 2009 Feb; 103(3):423-31. PubMed ID: 19049987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of glyphosate control of Phelipanche aegyptiaca.
    Shilo T; Zygier L; Rubin B; Wolf S; Eizenberg H
    Planta; 2016 Nov; 244(5):1095-1107. PubMed ID: 27440121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low strigolactone root exudation: a novel mechanism of broomrape (Orobanche and Phelipanche spp.) resistance available for faba bean breeding.
    Fernández-Aparicio M; Kisugi T; Xie X; Rubiales D; Yoneyama K
    J Agric Food Chem; 2014 Jul; 62(29):7063-71. PubMed ID: 24974726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low Infection of
    Hasegawa S; Tsutsumi T; Fukushima S; Okabe Y; Saito J; Katayama M; Shindo M; Yamada Y; Shimomura K; Yoneyama K; Akiyama K; Aoki K; Ariizumi T; Ezura H; Yamaguchi S; Umehara M
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30200620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.