These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27589351)

  • 21. The effect of cosolutes on the isomerization of aspartic acid residues and conformational stability in a monoclonal antibody.
    Wakankar AA; Liu J; Vandervelde D; Wang YJ; Shire SJ; Borchardt RT
    J Pharm Sci; 2007 Jul; 96(7):1708-18. PubMed ID: 17238195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of monoclonal antibody formulations based on high-throughput thermostability and viscosity measurements: design of experiment and statistical analysis.
    He F; Woods CE; Trilisky E; Bower KM; Litowski JR; Kerwin BA; Becker GW; Narhi LO; Razinkov VI
    J Pharm Sci; 2011 Apr; 100(4):1330-40. PubMed ID: 24081468
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure elucidation and quantification of impurities formed between 6-aminocaproic acid and the excipients citric acid and sorbitol in an oral solution using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy.
    Schou-Pedersen AM; Cornett C; Nyberg N; Østergaard J; Hansen SH
    J Pharm Biomed Anal; 2015 Mar; 107():333-40. PubMed ID: 25645337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of Hydrogen Exchange Mass Spectrometry as a Stability-Indicating Method for Formulation Excipient Screening for an IgG4 Monoclonal Antibody.
    Toth RT; Pace SE; Mills BJ; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2018 Apr; 107(4):1009-1019. PubMed ID: 29269271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies.
    Guo Z; Chen A; Nassar RA; Helk B; Mueller C; Tang Y; Gupta K; Klibanov AM
    Pharm Res; 2012 Nov; 29(11):3102-9. PubMed ID: 22692671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Excipients differentially influence the conformational stability and pretransition dynamics of two IgG1 monoclonal antibodies.
    Thakkar SV; Joshi SB; Jones ME; Sathish HA; Bishop SM; Volkin DB; Middaugh CR
    J Pharm Sci; 2012 Sep; 101(9):3062-77. PubMed ID: 22581714
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.
    Bahrenburg S; Karow AR; Garidel P
    Biotechnol J; 2015 Apr; 10(4):610-22. PubMed ID: 25641961
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of Excipient Effects on Reversible Self-Association, Backbone Flexibility, and Solution Properties of an IgG1 Monoclonal Antibody at High Concentrations: Part 1.
    Hu Y; Arora J; Joshi SB; Esfandiary R; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2020 Jan; 109(1):340-352. PubMed ID: 31201906
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Formulation Development Approach to Identify and Select Stable Ultra-High-Concentration Monoclonal Antibody Formulations With Reduced Viscosities.
    Whitaker N; Xiong J; Pace SE; Kumar V; Middaugh CR; Joshi SB; Volkin DB
    J Pharm Sci; 2017 Nov; 106(11):3230-3241. PubMed ID: 28668340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Orthogonal Techniques to Study the Effect of pH, Sucrose, and Arginine Salts on Monoclonal Antibody Physical Stability and Aggregation During Long-Term Storage.
    Svilenov HL; Kulakova A; Zalar M; Golovanov AP; Harris P; Winter G
    J Pharm Sci; 2020 Jan; 109(1):584-594. PubMed ID: 31689429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ranking mAb-excipient interactions in biologics formulations by NMR spectroscopy and computational approaches.
    Zhang C; Gossert ST; Williams J; Little M; Barros M; Dear B; Falk B; Kanthe AD; Garmise R; Mueller L; Ilott A; Abraham A
    MAbs; 2023; 15(1):2212416. PubMed ID: 37218059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Utility of High Resolution 2D NMR Fingerprinting in Assessing Viscosity of Therapeutic Monoclonal Antibodies.
    Majumder S; Bhattacharya DS; Langford A; Ignatius AA
    Pharm Res; 2022 Mar; 39(3):529-539. PubMed ID: 35174433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A microliter capillary rheometer for characterization of protein solutions.
    Hudson SD; Sarangapani P; Pathak JA; Migler KB
    J Pharm Sci; 2015 Feb; 104(2):678-85. PubMed ID: 25308758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and stability study of polysorbate 20 in therapeutic monoclonal antibody formulation by multidimensional ultrahigh-performance liquid chromatography-charged aerosol detection-mass spectrometry.
    Li Y; Hewitt D; Lentz YK; Ji JA; Zhang TY; Zhang K
    Anal Chem; 2014 May; 86(10):5150-7. PubMed ID: 24749737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Use of a screening method to determine excipients which optimize the extent and stability of supersaturated drug solutions and application of this system to solid formulation design.
    Vandecruys R; Peeters J; Verreck G; Brewster ME
    Int J Pharm; 2007 Sep; 342(1-2):168-75. PubMed ID: 17573214
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of Affinity-Capture Self-Interaction Nanoparticle Spectroscopy in Predicting Protein Stability, Especially for Co-Formulated Antibodies.
    Zhou M; Yan Z; Li H; Liu X; Sun P
    Pharm Res; 2021 Apr; 38(4):721-732. PubMed ID: 33754257
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The search for novel proline analogs for viscosity reduction and stabilization of highly concentrated monoclonal antibody solutions.
    Prašnikar M; Proj M; Bjelošević Žiberna M; Lebar B; Knez B; Kržišnik N; Roškar R; Gobec S; Grabnar I; Žula A; Ahlin Grabnar P
    Int J Pharm; 2024 Apr; 655():124055. PubMed ID: 38554741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb.
    Ghazvini S; Kalonia C; Volkin DB; Dhar P
    J Pharm Sci; 2016 May; 105(5):1643-1656. PubMed ID: 27025981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into the Conformation and Self-Association of a Concentrated Monoclonal Antibody using Isothermal Chemical Denaturation and Nuclear Magnetic Resonance.
    Xu J; Namanja A; Chan SL; Son C; Petros AM; Sun C; Radziejewski C; Ihnat PM
    J Pharm Sci; 2021 Dec; 110(12):3819-3828. PubMed ID: 34506864
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.