These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 27589409)

  • 1. Minidumbbell: A New Form of Native DNA Structure.
    Guo P; Lam SL
    J Am Chem Soc; 2016 Sep; 138(38):12534-40. PubMed ID: 27589409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unusual structures of CCTG repeats and their participation in repeat expansion.
    Guo P; Lam SL
    Biomol Concepts; 2016 Dec; 7(5-6):331-340. PubMed ID: 27879482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unprecedented hydrophobic stabilizations from a reverse wobble T·T mispair in DNA minidumbbell.
    Guo P; Lam SL
    J Biomol Struct Dyn; 2020 Apr; 38(7):1946-1953. PubMed ID: 31107180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Extraordinarily Stable DNA Minidumbbell.
    Guo P; Lam SL
    J Phys Chem Lett; 2017 Aug; 8(15):3478-3481. PubMed ID: 28696721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New insights into the genetic instability in CCTG repeats.
    Guo P; Lam SL
    FEBS Lett; 2015 Oct; 589(20 Pt B):3058-63. PubMed ID: 26384951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual structures of TTTA repeats in icaC gene of Staphylococcus aureus.
    Guo P; Lam SL
    FEBS Lett; 2015 May; 589(12):1296-300. PubMed ID: 25935415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of a DNA Mini-Dumbbell with a Quasi-Type II Loop.
    Liu Y; Guo P; Lam SL
    J Phys Chem B; 2017 Mar; 121(12):2554-2560. PubMed ID: 28252960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The competing mini-dumbbell mechanism: new insights into CCTG repeat expansion.
    Guo P; Lam SL
    Signal Transduct Target Ther; 2016; 1():16028. PubMed ID: 29263904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases.
    Liu Y; Wan L; Ngai CK; Wang Y; Lam SL; Guo P
    Comput Struct Biotechnol J; 2023; 21():1584-1592. PubMed ID: 36874156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence Effect on the Formation of DNA Minidumbbells.
    Liu Y; Lam SL
    J Phys Chem B; 2017 Nov; 121(45):10338-10343. PubMed ID: 29050467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Minidumbbell structures formed by ATTCT pentanucleotide repeats in spinocerebellar ataxia type 10.
    Guo P; Lam SL
    Nucleic Acids Res; 2020 Jul; 48(13):7557-7568. PubMed ID: 32520333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sequence on repeat expansion during DNA replication.
    Heidenfelder BL; Topal MD
    Nucleic Acids Res; 2003 Dec; 31(24):7159-64. PubMed ID: 14654691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural roles of CTG repeats in slippage expansion during DNA replication.
    Chi LM; Lam SL
    Nucleic Acids Res; 2005; 33(5):1604-17. PubMed ID: 15767285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Resolution Structures of DNA Minidumbbells Comprising Type II Tetraloops with a Purine Minor Groove Residue.
    Ngai CK; Lam SL; Lee HK; Guo P
    J Phys Chem B; 2020 Jun; 124(25):5131-5138. PubMed ID: 32484672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of interrupting residues on DNA dumbbell structures formed by CCTG tetranucleotide repeats associated with myotonic dystrophy type 2.
    Yang Y; Wang Y; Yan Z; Li Z; Guo P
    FEBS Lett; 2024 Jun; ():. PubMed ID: 38922834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Landscapes of Mini-Dumbbell DNA Octanucleotides.
    Klimavicz JS; Röder K; Wales DJ
    J Chem Theory Comput; 2018 Jul; 14(7):3870-3876. PubMed ID: 29792700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The origin of genetic instability in CCTG repeats.
    Lam SL; Wu F; Yang H; Chi LM
    Nucleic Acids Res; 2011 Aug; 39(14):6260-8. PubMed ID: 21478167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA structures, repeat expansions and human hereditary disorders.
    Mirkin SM
    Curr Opin Struct Biol; 2006 Jun; 16(3):351-8. PubMed ID: 16713248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG) x (CAGG) repeat.
    Edwards SF; Sirito M; Krahe R; Sinden RR
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3270-5. PubMed ID: 19218442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.