These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. DM2 CCTG*CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG*CAG repeats in Escherichia coli. Dere R; Wells RD J Mol Biol; 2006 Jun; 360(1):21-36. PubMed ID: 16753177 [TBL] [Abstract][Full Text] [Related]
23. A purine and a backbone discontinuous site alter the structure and thermal stability of DNA minidumbbells containing two pentaloops. Ngai CK; Lam SL; Lee HK; Guo P FEBS Lett; 2022 Mar; 596(6):826-840. PubMed ID: 35060128 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial tRNAs as light strand replication origins: similarity between anticodon loops and the loop of the light strand replication origin predicts initiation of DNA replication. Seligmann H Biosystems; 2010 Feb; 99(2):85-93. PubMed ID: 19755136 [TBL] [Abstract][Full Text] [Related]
26. A pH and Mg Zhang J; Wang Y; Wan L; Liu Y; Yi J; Lam SL; Guo P ACS Omega; 2021 Oct; 6(42):28263-28269. PubMed ID: 34723023 [TBL] [Abstract][Full Text] [Related]
27. DNA double-strand breaks induce deletion of CTG.CAG repeats in an orientation-dependent manner in Escherichia coli. Hebert ML; Spitz LA; Wells RD J Mol Biol; 2004 Feb; 336(3):655-72. PubMed ID: 15095979 [TBL] [Abstract][Full Text] [Related]
28. Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication. Erdeniz N; Dudley S; Gealy R; Jinks-Robertson S; Liskay RM Mol Cell Biol; 2005 Nov; 25(21):9221-31. PubMed ID: 16227575 [TBL] [Abstract][Full Text] [Related]
29. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Trinh TQ; Sinden RR Nature; 1991 Aug; 352(6335):544-7. PubMed ID: 1865910 [TBL] [Abstract][Full Text] [Related]
30. A novel mutational hotspot in a natural quasipalindrome in Escherichia coli. Viswanathan M; Lacirignola JJ; Hurley RL; Lovett ST J Mol Biol; 2000 Sep; 302(3):553-64. PubMed ID: 10986118 [TBL] [Abstract][Full Text] [Related]
31. Stimulation of DNA strand slippage synthesis by a bulge binding synthetic agent. Kappen LS; Xi Z; Jones GB; Goldberg IH Biochemistry; 2003 Feb; 42(7):2166-73. PubMed ID: 12590606 [TBL] [Abstract][Full Text] [Related]
32. DNA triplet repeat expansion and mismatch repair. Iyer RR; Pluciennik A; Napierala M; Wells RD Annu Rev Biochem; 2015; 84():199-226. PubMed ID: 25580529 [TBL] [Abstract][Full Text] [Related]
33. Atomic force microscopy proposes a novel model for stem-loop structure that binds a heat shock protein in the Staphylococcus aureus HSP70 operon. Ohta T; Nettikadan S; Tokumasu F; Ideno H; Abe Y; Kuroda M; Hayashi H; Takeyasu K Biochem Biophys Res Commun; 1996 Sep; 226(3):730-4. PubMed ID: 8831682 [TBL] [Abstract][Full Text] [Related]
34. Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Paiva AM; Sheardy RD Biochemistry; 2004 Nov; 43(44):14218-27. PubMed ID: 15518572 [TBL] [Abstract][Full Text] [Related]
35. Replication stalling and heteroduplex formation within CAG/CTG trinucleotide repeats by mismatch repair. Viterbo D; Michoud G; Mosbach V; Dujon B; Richard GF DNA Repair (Amst); 2016 Jun; 42():94-106. PubMed ID: 27045900 [TBL] [Abstract][Full Text] [Related]
36. Hairpin induced slippage and hyper-methylation of the fragile X DNA triplets. Chen X; Mariappan SV; Moyzis RK; Bradbury EM; Gupta G J Biomol Struct Dyn; 1998 Feb; 15(4):745-56. PubMed ID: 9514250 [TBL] [Abstract][Full Text] [Related]
37. Mechanisms of tandem repeat instability in bacteria. Bichara M; Wagner J; Lambert IB Mutat Res; 2006 Jun; 598(1-2):144-63. PubMed ID: 16519906 [TBL] [Abstract][Full Text] [Related]
38. Replication restart: a pathway for (CTG).(CAG) repeat deletion in Escherichia coli. Kim SH; Pytlos MJ; Sinden RR Mutat Res; 2006 Mar; 595(1-2):5-22. PubMed ID: 16472829 [TBL] [Abstract][Full Text] [Related]
39. Absence of MutSĪ² leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks. Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933 [TBL] [Abstract][Full Text] [Related]
40. Slipped structures in DNA triplet repeat sequences: entropic contributions to genetic instabilities. Harvey SC Biochemistry; 1997 Mar; 36(11):3047-9. PubMed ID: 9115978 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]