These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 27589726)
1. Impact of Phosphate, Potassium, Yeast Extract, and Trace Metals on Chitosan and Metabolite Production by Mucor indicus. Safaei Z; Karimi K; Zamani A Int J Mol Sci; 2016 Aug; 17(9):. PubMed ID: 27589726 [TBL] [Abstract][Full Text] [Related]
2. Effect of phosphate on glucosamine production by ethanolic fungus Mucor indicus. Mohammadi M; Zamani A; Karimi K Appl Biochem Biotechnol; 2013 Nov; 171(6):1465-72. PubMed ID: 23963717 [TBL] [Abstract][Full Text] [Related]
3. Co-Production of Fungal Biomass Derived Constituents and Ethanol from Citrus Wastes Free Sugars without Auxiliary Nutrients in Airlift Bioreactor. Satari B; Karimi K; Taherzadeh MJ; Zamani A Int J Mol Sci; 2016 Feb; 17(3):302. PubMed ID: 26927089 [TBL] [Abstract][Full Text] [Related]
4. Ethanol production from hexoses, pentoses, and dilute-acid hydrolyzate by Mucor indicus. Sues A; Millati R; Edebo L; Taherzadeh MJ FEMS Yeast Res; 2005 Apr; 5(6-7):669-76. PubMed ID: 15780667 [TBL] [Abstract][Full Text] [Related]
5. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production. Safaei Z; Karimi K; Golkar P; Zamani A Int J Mol Sci; 2015 Jul; 16(7):16683-94. PubMed ID: 26204839 [TBL] [Abstract][Full Text] [Related]
6. Effects of different growth forms of Mucor indicus on cultivation on dilute-acid lignocellulosic hydrolyzate, inhibitor tolerance, and cell wall composition. Lennartsson PR; Karimi K; Edebo L; Taherzadeh MJ J Biotechnol; 2009 Sep; 143(4):255-61. PubMed ID: 19631243 [TBL] [Abstract][Full Text] [Related]
7. Mucor indicus: biology and industrial application perspectives: a review. Karimi K; Zamani A Biotechnol Adv; 2013; 31(4):466-81. PubMed ID: 23376652 [TBL] [Abstract][Full Text] [Related]
8. Extraction and characterization of fungal chitin nanofibers from Mucor indicus cultured in optimized medium conditions. Salehinik F; Behzad T; Zamani A; Bahrami B Int J Biol Macromol; 2021 Jan; 167():1126-1134. PubMed ID: 33188816 [TBL] [Abstract][Full Text] [Related]
9. Sustainable and Effective Chitosan Production by Dimorphic Fungus Mucor rouxii via Replacing Yeast Extract with Fungal Extract. Abasian L; Shafiei Alavijeh R; Satari B; Karimi K Appl Biochem Biotechnol; 2020 Jun; 191(2):666-678. PubMed ID: 31845196 [TBL] [Abstract][Full Text] [Related]
10. Production of ethanol by filamentous and yeast-like forms of Mucor indicus from fructose, glucose, sucrose, and molasses. Sharifia M; Karimi K; Taherzadeh MJ J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1253-9. PubMed ID: 18712551 [TBL] [Abstract][Full Text] [Related]
11. Fungal autolysate as a nutrient supplement for ethanol and chitosan production by Mucor indicus. Asachi R; Karimi K; Taherzadeh MJ Biotechnol Lett; 2011 Dec; 33(12):2405-9. PubMed ID: 21842395 [TBL] [Abstract][Full Text] [Related]
12. Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucor circinelloides using yam bean as substrate. Fai AE; Stamford TC; Stamford-Arnaud TM; Santa-Cruz PD; da Silva MC; Campos-Takaki GM; Stamford TL Molecules; 2011 Aug; 16(8):7143-54. PubMed ID: 21862956 [TBL] [Abstract][Full Text] [Related]
13. Aerobic and anaerobic ethanol production by Mucor circinelloides during submerged growth. Lübbehüsen TL; Nielsen J; McIntyre M Appl Microbiol Biotechnol; 2004 Feb; 63(5):543-8. PubMed ID: 12879305 [TBL] [Abstract][Full Text] [Related]
14. Supplementation requirements of brewery's spent grain hydrolysate for biomass and xylitol production by Debaryomyces hansenii CCMI 941. Carvalheiro F; Duarte LC; Lopes S; Parajó JC; Pereira H; Gírio FM J Ind Microbiol Biotechnol; 2006 Aug; 33(8):646-54. PubMed ID: 16520980 [TBL] [Abstract][Full Text] [Related]
16. Effect of medium components and time of cultivation on chitin production by Mucor circinelloides (Mucor javanicus IFO 4570) -- a factorial study. Sousa Andrade V; de Barros Neto B; Fukushima K; Campos Takaki GM Rev Iberoam Micol; 2003 Dec; 20(4):149-53. PubMed ID: 15456353 [TBL] [Abstract][Full Text] [Related]
17. Optimization of a corn steep medium for production of ethanol from synthesis gas fermentation by Clostridium ragsdalei. Saxena J; Tanner RS World J Microbiol Biotechnol; 2012 Apr; 28(4):1553-61. PubMed ID: 22805937 [TBL] [Abstract][Full Text] [Related]
18. Increased product formation induced by a directed secondary substrate limitation in a batch Hansenula polymorpha culture. Kottmeier K; Müller C; Huber R; Büchs J Appl Microbiol Biotechnol; 2010 Mar; 86(1):93-101. PubMed ID: 19859706 [TBL] [Abstract][Full Text] [Related]
19. Biotechnological Strategies for Chitosan Production by Mucoralean Strains and Dimorphism Using Renewable Substrates. de Souza AF; Galindo HM; de Lima MAB; Ribeaux DR; Rodríguez DM; da Silva Andrade RF; Gusmão NB; de Campos-Takaki GM Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32560213 [TBL] [Abstract][Full Text] [Related]
20. Influence of plant growth hormones on the growth of Mucor rouxii and chitosan production. Chatterjee S; Chatterjee S; Chatterjee BP; Guha AK Microbiol Res; 2009; 164(3):347-51. PubMed ID: 17825544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]