These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27590092)

  • 41. [Combustion characteristics of municipal solid waste in fluidized bed].
    Jiang F; Pan Z; Zhang L; Fang J; Jiao W; Yang B
    Huan Jing Ke Xue; 2001 Jan; 22(1):62-6. PubMed ID: 11382046
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fluidized-bed gasification of dairy manure by Box-Behnken design.
    Wu H; Hanna MA; Jones DD
    Waste Manag Res; 2012 May; 30(5):506-11. PubMed ID: 22071174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An experimental study on biomass air-steam gasification in a fluidized bed.
    Lv PM; Xiong ZH; Chang J; Wu CZ; Chen Y; Zhu JX
    Bioresour Technol; 2004 Oct; 95(1):95-101. PubMed ID: 15207301
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prediction for energy content of Taiwan municipal solid waste using multilayer perceptron neural networks.
    Shu HY; Lu HC; Fan HJ; Chang MC; Chen JC
    J Air Waste Manag Assoc; 2006 Jun; 56(6):852-8. PubMed ID: 16805410
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural network prediction of thermophilic (65 degrees C) sulfidogenic fluidized-bed reactor performance for the treatment of metal-containing wastewater.
    Sahinkaya E; Ozkaya B; Kaksonen AH; Puhakka JA
    Biotechnol Bioeng; 2007 Jul; 97(4):780-7. PubMed ID: 17154306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the emissions from the gasification processing of municipal solid waste followed by combustion.
    Lopes EJ; Queiroz N; Yamamoto CI; da Costa Neto PR
    Waste Manag; 2018 Mar; 73():504-510. PubMed ID: 29258774
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of a dual fluidized bed gasifier with blended biomass/coal as feedstock.
    Yan L; Cao Y; Li X; He B
    Bioresour Technol; 2018 Apr; 254():97-106. PubMed ID: 29413945
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prediction of some physical and drying properties of terebinth fruit (Pistacia atlantica L.) using Artificial Neural Networks.
    Kaveh M; Chayjan RA
    Acta Sci Pol Technol Aliment; 2014; 13(1):65-78. PubMed ID: 24583385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Experimental investigation of synthetic gas composition in a two-stage fluidized bed gasification process: effect of activated carbon as bed material.
    Kuo JH; Lin CL; Chang TJ; Weng WC; Liu J
    Environ Technol; 2017 May; 38(9):1169-1175. PubMed ID: 27540693
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Numerical simulation of waste tyres gasification.
    Janajreh I; Raza SS
    Waste Manag Res; 2015 May; 33(5):460-8. PubMed ID: 25755167
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Technical assessment of the CLEERGAS moving grate-based process for energy generation from municipal solid waste.
    Lusardi MR; Kohn M; Themelis NJ; Castaldi MJ
    Waste Manag Res; 2014 Aug; 32(8):772-81. PubMed ID: 25096323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of Artificial Neural Networks in the Design and Optimization of a Nanoparticulate Fingolimod Delivery System Based on Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate).
    Shahsavari S; Rezaie Shirmard L; Amini M; Abedin Dokoosh F
    J Pharm Sci; 2017 Jan; 106(1):176-182. PubMed ID: 27666377
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.
    Fu Q; Huang Y; Niu M; Yang G; Shao Z
    Waste Manag Res; 2014 Oct; 32(10):988-96. PubMed ID: 25265865
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modelling moisture diffusivity of pomegranate seed cultivars under fixed, semi fluidized and fluidized bed using mathematical and neural network methods.
    Chayjan RA; Salari K; Barikloo H
    Acta Sci Pol Technol Aliment; 2012 Apr; 11(2):131-48. PubMed ID: 22493156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modeling and comparative assessment of municipal solid waste gasification for energy production.
    Arafat HA; Jijakli K
    Waste Manag; 2013 Aug; 33(8):1704-13. PubMed ID: 23726119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process.
    Zeng X; Shao R; Wang F; Dong P; Yu J; Xu G
    Bioresour Technol; 2016 Apr; 206():93-98. PubMed ID: 26849201
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact.
    Aracil C; Haro P; Fuentes-Cano D; Gómez-Barea A
    Waste Manag; 2018 Jun; 76():443-456. PubMed ID: 29610061
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Predicting the heating value of MSW with a feed forward neural network.
    Dong C; Jin B; Li D
    Waste Manag; 2003; 23(2):103-6. PubMed ID: 12623084
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Artificial neural network analysis in preclinical breast cancer.
    Motalleb G
    Cell J; 2014; 15(4):324-31. PubMed ID: 24381857
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.