BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27590147)

  • 21. Pin-point chemical modification of RNA with diverse molecules through the functionality transfer reaction and the copper-catalyzed azide-alkyne cycloaddition reaction.
    Onizuka K; Shibata A; Taniguchi Y; Sasaki S
    Chem Commun (Camb); 2011 May; 47(17):5004-6. PubMed ID: 21431191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of Modular Brush Polymer-Protein Hybrids Using Diazotransfer and Copper Click Chemistry.
    Navarro LA; French DL; Zauscher S
    Bioconjug Chem; 2018 Aug; 29(8):2594-2605. PubMed ID: 30001617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation.
    Rösner D; Schneider T; Schneider D; Scheffner M; Marx A
    Nat Protoc; 2015 Oct; 10(10):1594-611. PubMed ID: 26401915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Site-specific conjugation of 8-ethynyl-BODIPY to a protein by [2 + 3] cycloaddition.
    Albrecht M; Lippach A; Exner MP; Jerbi J; Springborg M; Budisa N; Wenz G
    Org Biomol Chem; 2015 Jun; 13(24):6728-36. PubMed ID: 25994282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Zhu L; Brassard CJ; Zhang X; Guha PM; Clark RJ
    Chem Rec; 2016 Jun; 16(3):1501-17. PubMed ID: 27216993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Labeling proteins on live mammalian cells using click chemistry.
    Nikić I; Kang JH; Girona GE; Aramburu IV; Lemke EA
    Nat Protoc; 2015 May; 10(5):780-91. PubMed ID: 25906116
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast RNA conjugations on solid phase by strain-promoted cycloadditions.
    Singh I; Freeman C; Madder A; Vyle JS; Heaney F
    Org Biomol Chem; 2012 Sep; 10(33):6633-9. PubMed ID: 22751955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anionic surfactants enhance click reaction-mediated protein conjugation with ubiquitin.
    Schneider D; Schneider T; Aschenbrenner J; Mortensen F; Scheffner M; Marx A
    Bioorg Med Chem; 2016 Mar; 24(5):995-1001. PubMed ID: 26827138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a simple method for protein conjugation by copper-free click reaction and its application to antibody-free Western blot analysis.
    Jang S; Sachin K; Lee HJ; Kim DW; Lee HS
    Bioconjug Chem; 2012 Nov; 23(11):2256-61. PubMed ID: 23039792
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper-assisted click reactions for activity-based proteomics: fine-tuned ligands and refined conditions extend the scope of application.
    Rudolf GC; Sieber SA
    Chembiochem; 2013 Dec; 14(18):2447-55. PubMed ID: 24166841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simple plate-based, parallel synthesis of disulfide fragments using the CuAAC click reaction.
    Turner DM; Tom CT; Renslo AR
    ACS Comb Sci; 2014 Dec; 16(12):661-4. PubMed ID: 25353066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inverse electron demand Diels-Alder (IEDDA) reactions in peptide chemistry.
    Pagel M
    J Pept Sci; 2019 Jan; 25(1):e3141. PubMed ID: 30585397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring and Suppressing the Oxidative Damage to DNA During Cu(I)-Catalyzed Azide-Alkyne Cycloaddition.
    Abel GR; Calabrese ZA; Ayco J; Hein JE; Ye T
    Bioconjug Chem; 2016 Mar; 27(3):698-704. PubMed ID: 26829457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu(I)-assisted click chemistry strategy for conjugation of non-protected cross-bridged macrocyclic chelators to tumour-targeting peptides.
    Cai Z; Li BT; Wong EH; Weisman GR; Anderson CJ
    Dalton Trans; 2015 Mar; 44(9):3945-8. PubMed ID: 25645688
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous "one pot" expressed protein ligation and CuI-catalyzed azide/alkyne cycloaddition for protein immobilization.
    Steinhagen M; Holland-Nell K; Meldal M; Beck-Sickinger AG
    Chembiochem; 2011 Nov; 12(16):2426-30. PubMed ID: 21901810
    [No Abstract]   [Full Text] [Related]  

  • 36. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.
    Vutti S; Schoffelen S; Bolinsson J; Buch-Månson N; Bovet N; Nygård J; Martinez KL; Meldal M
    Chemistry; 2016 Jan; 22(2):496-500. PubMed ID: 26601641
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-pot synthesis of Au@SiO(2) catalysts: a click chemistry approach.
    Solovyeva VA; Vu KB; Merican Z; Sougrat R; Rodionov VO
    ACS Comb Sci; 2014 Oct; 16(10):513-7. PubMed ID: 25229602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient access to new chemical space through flow--construction of druglike macrocycles through copper-surface-catalyzed azide-alkyne cycloaddition reactions.
    Bogdan AR; James K
    Chemistry; 2010 Dec; 16(48):14506-12. PubMed ID: 21038332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-Supported Copper Nanomaterials: Recyclable Catalysts for Huisgen [3+2] Cycloaddition Reactions.
    Shaygan Nia A; Rana S; Döhler D; Jirsa F; Meister A; Guadagno L; Koslowski E; Bron M; Binder WH
    Chemistry; 2015 Jul; 21(30):10763-70. PubMed ID: 26089200
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CuAAC click functionalization of azide-modified nanodiamond with a photoactivatable CO-releasing molecule (PhotoCORM) based on [Mn(CO)3(tpm)]+.
    Dördelmann G; Meinhardt T; Sowik T; Krueger A; Schatzschneider U
    Chem Commun (Camb); 2012 Dec; 48(94):11528-30. PubMed ID: 23090687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.