BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27590553)

  • 1. A nonionic surfactant-decorated liquid crystal sensor for sensitive and selective detection of proteins.
    Wang Y; Hu Q; Tian T; Gao Y; Yu L
    Anal Chim Acta; 2016 Sep; 937():119-26. PubMed ID: 27590553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cationic surfactant-decorated liquid crystal sensing platform for simple and sensitive detection of acetylcholinesterase and its inhibitor.
    Wang Y; Hu Q; Guo Y; Yu L
    Biosens Bioelectron; 2015 Oct; 72():25-30. PubMed ID: 25957073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A liquid crystal-based sensor for the simple and sensitive detection of cellulase and cysteine.
    Wang Y; Hu Q; Tian T; Gao Y; Yu L
    Colloids Surf B Biointerfaces; 2016 Nov; 147():100-105. PubMed ID: 27497931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA.
    Wang Y; Zhou L; Kang Q; Yu L
    Talanta; 2018 Jun; 183():223-227. PubMed ID: 29567168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin.
    Chuang CH; Lin YC; Chen WL; Chen YH; Chen YX; Chen CM; Shiu HW; Chang LY; Chen CH; Chen CH
    Biosens Bioelectron; 2016 Apr; 78():213-220. PubMed ID: 26613511
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting proteins in microfluidic channels decorated with liquid crystal sensing dots.
    Aliño VJ; Sim PH; Choy WT; Fraser A; Yang KL
    Langmuir; 2012 Dec; 28(50):17571-7. PubMed ID: 23163482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple strategy to monitor lipase activity using liquid crystal-based sensors.
    Hu QZ; Jang CH
    Talanta; 2012 Sep; 99():36-9. PubMed ID: 22967518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientational behaviors of liquid crystals coupled to chitosan-disrupted phospholipid membranes at the aqueous-liquid crystal interface.
    Liu D; Hu QZ; Jang CH
    Colloids Surf B Biointerfaces; 2013 Aug; 108():142-6. PubMed ID: 23537831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple quantitative method to study protein-lipopolysaccharide interactions by using liquid crystals.
    Das D; Sidiq S; Pal SK
    Chemphyschem; 2015 Mar; 16(4):753-60. PubMed ID: 25572441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin.
    Ryu JJ; Jang CH
    Biotechnol Appl Biochem; 2023 Dec; 70(6):1972-1982. PubMed ID: 37479671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Configuration change of liquid crystal microdroplets coated with a novel polyacrylic acid block liquid crystalline polymer by protein adsorption.
    Khan W; Park SY
    Lab Chip; 2012 Nov; 12(21):4553-9. PubMed ID: 22964831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alignment of nematic liquid crystals decorated with gemini surfactants and interaction of proteins with gemini surfactants at fluid interfaces.
    Tian T; Kang Q; Wang T; Xiao J; Yu L
    J Colloid Interface Sci; 2018 May; 518():111-121. PubMed ID: 29448227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cationic Surfactant-Decorated Liquid Crystal-Based Aptasensor for Label-Free Detection of Malathion Pesticides in Environmental Samples.
    Nguyen DK; Jang CH
    Biosensors (Basel); 2021 Mar; 11(3):. PubMed ID: 33806721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bovine Serum Albumin Protein-Based Liquid Crystal Biosensors for Optical Detection of Toxic Heavy Metals in Water.
    Amin NU; Siddiqi HM; Kun Lin Y; Hussain Z; Majeed N
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31948064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS detection of Biomolecules at Physiological pH via aggregation of Gold Nanorods mediated by Optical Forces and Plasmonic Heating.
    Fazio B; D'Andrea C; Foti A; Messina E; Irrera A; Donato MG; Villari V; Micali N; Maragò OM; Gucciardi PG
    Sci Rep; 2016 Jun; 6():26952. PubMed ID: 27246267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosensor utilizing a liquid crystal/water interface functionalized with poly(4-cyanobiphenyl-4'-oxyundecylacrylate-b-((2-dimethyl amino) ethyl methacrylate)).
    Omer M; Khan M; Kim YK; Lee JH; Kang IK; Park SY
    Colloids Surf B Biointerfaces; 2014 Sep; 121():400-8. PubMed ID: 25009103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Series of In Situ Photoinduced Polymer Graftings for Sensitive Detection of Protein Biomarkers via Cascade Amplification of Liquid Crystal Signals.
    Wu X; Ding X; Xu FJ
    Biomacromolecules; 2018 Jun; 19(6):1959-1965. PubMed ID: 29401373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic anchoring transitions at aqueous-liquid crystal interfaces induced by specific and non-specific binding of vesicles to proteins.
    Tan LN; Abbott NL
    J Colloid Interface Sci; 2015 Jul; 449():452-61. PubMed ID: 25731912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging trypsin activity through changes in the orientation of liquid crystals coupled to the interactions between a polyelectrolyte and a phospholipid layer.
    Hu QZ; Jang CH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1791-5. PubMed ID: 22394113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasensitive detection of glutathione based on liquid crystals in the presence of γ-glutamyl transpeptidase.
    Zhou L; Kang Q; Hu O; Yu L
    Anal Chim Acta; 2018 Dec; 1040():187-195. PubMed ID: 30327109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.