These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 27590556)
1. Fast and sensitive detection of ochratoxin A in red wine by nanoparticle-enhanced SPR. Karczmarczyk A; Reiner-Rozman C; Hageneder S; Dubiak-Szepietowska M; Dostálek J; Feller KH Anal Chim Acta; 2016 Sep; 937():143-50. PubMed ID: 27590556 [TBL] [Abstract][Full Text] [Related]
2. Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Yuan J; Deng D; Lauren DR; Aguilar MI; Wu Y Anal Chim Acta; 2009 Dec; 656(1-2):63-71. PubMed ID: 19932816 [TBL] [Abstract][Full Text] [Related]
3. Development of a QCM-D biosensor for Ochratoxin A detection in red wine. Karczmarczyk A; Haupt K; Feller KH Talanta; 2017 May; 166():193-197. PubMed ID: 28213222 [TBL] [Abstract][Full Text] [Related]
4. An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Chen W; Yan C; Cheng L; Yao L; Xue F; Xu J Biosens Bioelectron; 2018 Oct; 117():845-851. PubMed ID: 30096739 [TBL] [Abstract][Full Text] [Related]
5. Aptamer-based Colorimetric Biosensing of Ochratoxin A in Fortified White Grape Wine Sample Using Unmodified Gold Nanoparticles. Yin X; Wang S; Liu X; He C; Tang Y; Li Q; Liu J; Su H; Tan T; Dong Y Anal Sci; 2017; 33(6):659-664. PubMed ID: 28603182 [TBL] [Abstract][Full Text] [Related]
6. An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Zhu Z; Feng M; Zuo L; Zhu Z; Wang F; Chen L; Li J; Shan G; Luo SZ Biosens Bioelectron; 2015 Mar; 65():320-6. PubMed ID: 25461176 [TBL] [Abstract][Full Text] [Related]
7. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement. Anfossi L; Di Nardo F; Giovannoli C; Passini C; Baggiani C Anal Bioanal Chem; 2013 Dec; 405(30):9859-67. PubMed ID: 24162821 [TBL] [Abstract][Full Text] [Related]
8. A facile AuNPs@aptamer-modified mercaptosiloxane-based hybrid affinity monolith with an unusually high coverage density of aptamer for on-column selective extraction of ochratoxin A. Chi J; Chen M; Deng L; Lin X; Xie Z Analyst; 2018 Oct; 143(21):5210-5217. PubMed ID: 30270376 [TBL] [Abstract][Full Text] [Related]
9. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L; Qian J; Yang X; Yan Y; Liu Q; Wang K; Wang K Anal Chim Acta; 2014 Jan; 806():128-35. PubMed ID: 24331048 [TBL] [Abstract][Full Text] [Related]
10. Dark field microscope-based single nanoparticle identification coupled with statistical analysis for ultrasensitive biotoxin detection in complex sample matrix. Xu S; Guo L; Chen L; Luo F; Qiu B; Lin Z Mikrochim Acta; 2020 Jun; 187(7):413. PubMed ID: 32601890 [TBL] [Abstract][Full Text] [Related]
11. Silver Nanoparticle-Based Fluorescence-Quenching Lateral Flow Immunoassay for Sensitive Detection of Ochratoxin A in Grape Juice and Wine. Jiang H; Li X; Xiong Y; Pei K; Nie L; Xiong Y Toxins (Basel); 2017 Feb; 9(3):. PubMed ID: 28264472 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive detection of ochratoxin A based on bio-barcode immunoassay and catalytic hairpin assembly signal amplification. Chen R; Sun Y; Huo B; Yuan S; Sun X; Zhang M; Yin N; Fan L; Yao W; Wang J; Han D; Li S; Peng Y; Bai J; Ning B; Liang J; Gao Z Talanta; 2020 Feb; 208():120405. PubMed ID: 31816695 [TBL] [Abstract][Full Text] [Related]
13. Highly Sensitive Colorimetric Detection of Ochratoxin A by a Label-Free Aptamer and Gold Nanoparticles. Luan Y; Chen J; Li C; Xie G; Fu H; Ma Z; Lu A Toxins (Basel); 2015 Dec; 7(12):5377-85. PubMed ID: 26690477 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of surface plasmon resonance sensing by indirect competitive inhibition immunoassay using Au nanoparticle labeled antibody. Kabiraz DC; Morita K; Sakamoto K; Kawaguchi T Talanta; 2017 Sep; 172():1-7. PubMed ID: 28602280 [TBL] [Abstract][Full Text] [Related]
15. Surface plasmon resonance biosensor for sensitive detection of microRNA and cancer cell using multiple signal amplification strategy. Liu R; Wang Q; Li Q; Yang X; Wang K; Nie W Biosens Bioelectron; 2017 Jan; 87():433-438. PubMed ID: 27589408 [TBL] [Abstract][Full Text] [Related]
16. Sensitive and rapid detection of aflatoxin M1 in milk utilizing enhanced SPR and p(HEMA) brushes. Karczmarczyk A; Dubiak-Szepietowska M; Vorobii M; Rodriguez-Emmenegger C; Dostálek J; Feller KH Biosens Bioelectron; 2016 Jul; 81():159-165. PubMed ID: 26945182 [TBL] [Abstract][Full Text] [Related]
17. Ochratoxin A detection in coffee by competitive inhibition assay using chitosan-based surface plasmon resonance compact system. Rehmat Z; Mohammed WS; Sadiq MB; Somarapalli M; Kumar Anal A Colloids Surf B Biointerfaces; 2019 Feb; 174():569-574. PubMed ID: 30502668 [TBL] [Abstract][Full Text] [Related]
18. Sensitive detection of multiple mycotoxins by SPRi with gold nanoparticles as signal amplification tags. Hu W; Chen H; Zhang H; He G; Li X; Zhang X; Liu Y; Li CM J Colloid Interface Sci; 2014 Oct; 431():71-6. PubMed ID: 24992296 [TBL] [Abstract][Full Text] [Related]
19. Electrochemiluminescent aptamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N-(aminobutyl)-N-ethylisoluminol as a luminescent label. Wang Z; Duan N; Hun X; Wu S Anal Bioanal Chem; 2010 Nov; 398(5):2125-32. PubMed ID: 20835816 [TBL] [Abstract][Full Text] [Related]
20. Rapid and sensitive detection of ochratoxin A using antibody-conjugated gold nanoparticles based on Localized Surface Plasmon Resonance. Pereira RHA; Keijok WJ; Prado AR; de Oliveira JP; Guimarães MCC Toxicon; 2021 Aug; 199():139-144. PubMed ID: 34153309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]