These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 27590697)

  • 21. CFD based simulation of thoron ((220)Rn) concentration in a delay chamber for mitigation application.
    Agarwal TK; Sahoo BK; Gaware JJ; Joshi M; Sapra BK
    J Environ Radioact; 2014 Oct; 136():16-21. PubMed ID: 24860913
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mathematical model for predicting the viability of airborne viruses.
    Posada JA; Redrow J; Celik I
    J Virol Methods; 2010 Mar; 164(1-2):88-95. PubMed ID: 20025904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the suitability of steady RANS CFD for forced mixing ventilation at transitional slot Reynolds numbers.
    van Hooff T; Blocken B; van Heijst GJ
    Indoor Air; 2013 Jun; 23(3):236-49. PubMed ID: 23094648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerobiology: Experimental Considerations, Observations, and Future Tools.
    Haddrell AE; Thomas RJ
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aerobiology of the built environment: Synergy between Legionella and fungi.
    Alum A; Isaacs GZ
    Am J Infect Control; 2016 Sep; 44(9 Suppl):S138-43. PubMed ID: 27590698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contribution of Vegetation to the Microbial Composition of Nearby Outdoor Air.
    Lymperopoulou DS; Adams RI; Lindow SE
    Appl Environ Microbiol; 2016 Jul; 82(13):3822-33. PubMed ID: 27107117
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact from indoor air mixing on the thoron progeny concentration and attachment fraction.
    de With G; de Jong P
    J Environ Radioact; 2016 Jul; 158-159():56-63. PubMed ID: 27064565
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of novel cardboard filters very effective in removing airborne bacteria from confined environments.
    Candiani G; Del Curto B; Malloggi C; Cigada A
    J Appl Biomater Biomech; 2011; 9(3):207-13. PubMed ID: 22190266
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of source model coupled computational fluid dynamics (CFD) simulation of the dispersion of airborne contaminants in a work environment.
    Salim SM; Viswanathan S; Ray MB
    J Occup Environ Hyg; 2006 Dec; 3(12):684-93. PubMed ID: 17050350
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of a head-only aerosol exposure system for nonhuman primates.
    Dabisch PA; Kline J; Lewis C; Yeager J; Pitt ML
    Inhal Toxicol; 2010 Feb; 22(3):224-33. PubMed ID: 20063997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A methodology for estimating airborne virus exposures in indoor environments using the spatial distribution of expiratory aerosols and virus viability characteristics.
    Sze To GN; Wan MP; Chao CY; Wei F; Yu SC; Kwan JK
    Indoor Air; 2008 Oct; 18(5):425-38. PubMed ID: 18691266
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ozone and limonene in indoor air: a source of submicron particle exposure.
    Wainman T; Zhang J; Weschler CJ; Lioy PJ
    Environ Health Perspect; 2000 Dec; 108(12):1139-45. PubMed ID: 11133393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the commercial bacterial air samplers by the new bacterial aerosol generator.
    Furuhashi M; Miyamae T
    Bull Tokyo Med Dent Univ; 1981 Mar; 28(1):7-21. PubMed ID: 7011587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora.
    Huttunen K; Rintala H; Hirvonen MR; Vepsäläinen A; Hyvärinen A; Meklin T; Toivola M; Nevalainen A
    Environ Res; 2008 Jul; 107(3):291-8. PubMed ID: 18462714
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An overview of human exposure modeling activities at the USEPA's National Exposure Research Laboratory.
    Furtaw EJ
    Toxicol Ind Health; 2001 Jun; 17(5-10):302-14. PubMed ID: 12539877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reducing indoor virus transmission using air purifiers.
    Dbouk T; Roger F; Drikakis D
    Phys Fluids (1994); 2021 Oct; 33(10):103301. PubMed ID: 34629834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of ionic air purifiers for reducing aerosol exposure in confined indoor spaces.
    Grinshpun SA; Mainelis G; Trunov M; Adhikari A; Reponen T; Willeke K
    Indoor Air; 2005 Aug; 15(4):235-45. PubMed ID: 15982270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle size distributions and concentrations of airborne endotoxin using novel collection methods in homes during the winter and summer seasons.
    Kujundzic E; Hernandez M; Miller SL
    Indoor Air; 2006 Jun; 16(3):216-26. PubMed ID: 16683940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of viable bioaerosol particles with a low-efficiency HVAC filter enhanced by continuous emission of unipolar air ions.
    Huang R; Agranovski I; Pyankov O; Grinshpun S
    Indoor Air; 2008 Apr; 18(2):106-12. PubMed ID: 18333990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Personal air samplers for measuring occupational exposures to biological hazards.
    Macher JM; First MW
    Am Ind Hyg Assoc J; 1984 Feb; 45(2):76-83. PubMed ID: 6702610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.