These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27590776)

  • 1. A two-variable model robust to pacemaker behaviour for the dynamics of the cardiac action potential.
    Corrado C; Niederer SA
    Math Biosci; 2016 Nov; 281():46-54. PubMed ID: 27590776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conduction velocity adapted eikonal model for electrophysiology problems with re-excitability evaluation.
    Corrado C; Zemzemi N
    Med Image Anal; 2018 Jan; 43():186-197. PubMed ID: 29128759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Parametric Computational Model of the Action Potential of Pacemaker Cells.
    Ai W; Patel ND; Roop PS; Malik A; Andalam S; Yip E; Allen N; Trew ML
    IEEE Trans Biomed Eng; 2018 Jan; 65(1):123-130. PubMed ID: 28436840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational cardiac electrophysiology: implementing mathematical models of cardiomyocytes to simulate action potentials of the heart.
    Bell MM; Cherry EM
    Methods Mol Biol; 2015; 1299():65-74. PubMed ID: 25836575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of I
    Li Y; Wang K; Li Q; Luo C; Zhang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3995-3998. PubMed ID: 31946747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer modeling of cardiac rhythm disturbances and heart-pacemaker interaction.
    Malik M; Camm AJ
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):2101-9. PubMed ID: 2463595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient parameterization of cardiac action potential models using a genetic algorithm.
    Cairns DI; Fenton FH; Cherry EM
    Chaos; 2017 Sep; 27(9):093922. PubMed ID: 28964158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An ionically based mapping model with memory for cardiac restitution.
    Schaeffer DG; Cain JW; Gauthier DJ; Kalb SS; Oliver RA; Tolkacheva EG; Ying W; Krassowska W
    Bull Math Biol; 2007 Feb; 69(2):459-82. PubMed ID: 17237915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pacemaker currents on creation and modulation of human ventricular pacemaker: theoretical study with application to biological pacemaker engineering.
    Kurata Y; Matsuda H; Hisatome I; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2007 Jan; 292(1):H701-18. PubMed ID: 16997892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Pivoting Electrical Waves in a Cardiac Tissue Model.
    Beaumont J
    Bull Math Biol; 2019 Jul; 81(7):2649-2690. PubMed ID: 31201662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified ionic models of cardiac tissue for efficient large scale computations.
    Bernus O; Verschelde H; Panfilov AV
    Phys Med Biol; 2002 Jun; 47(11):1947-59. PubMed ID: 12108777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of heterogeneous cardiac pacemaker tissue models and traveling wave dynamics.
    Ly C; Weinberg SH
    J Theor Biol; 2018 Dec; 459():18-35. PubMed ID: 30248329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hardware-in-the-loop simulation and energy optimization of cardiac pacemakers.
    Barker C; Kwiatkowska M; Mereacre A; Paoletti N; Patane A
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7188-91. PubMed ID: 26737950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamics of two-dimensional cardiac action potential duration mapping model with memory.
    Kesmia M; Boughaba S; Jacquir S
    J Math Biol; 2019 Apr; 78(5):1529-1552. PubMed ID: 30600334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The electrophysiological conditions of the ventricle-conducted heart pacemaker].
    Stauch M; Hirsch HH
    Thoraxchir Vask Chir; 1967 Dec; 15(6):613-7. PubMed ID: 5240630
    [No Abstract]   [Full Text] [Related]  

  • 16. Impact of the Endocardium in a Parameter Optimization to Solve the Inverse Problem of Electrocardiography.
    Ravon G; Coudière Y; Potse M; Dubois R
    Front Physiol; 2018; 9():1946. PubMed ID: 30723424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How different two almost identical action potentials can be: a model study on cardiac repolarization.
    Zaniboni M; Riva I; Cacciani F; Groppi M
    Math Biosci; 2010 Nov; 228(1):56-70. PubMed ID: 20801131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling action potential reversals in tunicate hearts.
    Cain JW; He L; Waldrop L
    Phys Rev E; 2020 Dec; 102(6-1):062421. PubMed ID: 33466064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Interaction of Membrane and Calcium Oscillators in Cardiac Pacemaker Cells: Mathematical Modeling].
    Ryvkin AM; Zorin NM; Moskvin AS; Solovyova OE; Markhasin VS
    Biofizika; 2015; 60(6):1138-45. PubMed ID: 26841508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recreating an artificial biological pacemaker: insights from a theoretical model.
    Viswanathan PC; Coles JA; Sharma V; Sigg DC
    Heart Rhythm; 2006 Jul; 3(7):824-31. PubMed ID: 16818216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.