These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 27590916)

  • 1. An analytical workflow for accurate variant discovery in highly divergent regions.
    Tian S; Yan H; Neuhauser C; Slager SL
    BMC Genomics; 2016 Sep; 17(1):703. PubMed ID: 27590916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of de novo assemblers for variation discovery in personal genomes.
    Tian S; Yan H; Klee EW; Kalmbach M; Slager SL
    Brief Bioinform; 2018 Sep; 19(5):893-904. PubMed ID: 28407084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OVarFlow: a resource optimized GATK 4 based Open source Variant calling workFlow.
    Bathke J; Lühken G
    BMC Bioinformatics; 2021 Aug; 22(1):402. PubMed ID: 34388963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study on fast calling variants from next-generation sequencing data using decision tree.
    Li Z; Wang Y; Wang F
    BMC Bioinformatics; 2018 Apr; 19(1):145. PubMed ID: 29673316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. VariantMetaCaller: automated fusion of variant calling pipelines for quantitative, precision-based filtering.
    Gézsi A; Bolgár B; Marx P; Sarkozy P; Szalai C; Antal P
    BMC Genomics; 2015 Oct; 16():875. PubMed ID: 26510841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance assessment of variant calling pipelines using human whole exome sequencing and simulated data.
    Kumaran M; Subramanian U; Devarajan B
    BMC Bioinformatics; 2019 Jun; 20(1):342. PubMed ID: 31208315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. INDELseek: detection of complex insertions and deletions from next-generation sequencing data.
    Au CH; Leung AY; Kwong A; Chan TL; Ma ES
    BMC Genomics; 2017 Jan; 18(1):16. PubMed ID: 28056804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detailed simulation of cancer exome sequencing data reveals differences and common limitations of variant callers.
    Hofmann AL; Behr J; Singer J; Kuipers J; Beisel C; Schraml P; Moch H; Beerenwinkel N
    BMC Bioinformatics; 2017 Jan; 18(1):8. PubMed ID: 28049408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From Wet-Lab to Variations: Concordance and Speed of Bioinformatics Pipelines for Whole Genome and Whole Exome Sequencing.
    Laurie S; Fernandez-Callejo M; Marco-Sola S; Trotta JR; Camps J; Chacón A; Espinosa A; Gut M; Gut I; Heath S; Beltran S
    Hum Mutat; 2016 Dec; 37(12):1263-1271. PubMed ID: 27604516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic comparison of variant calling pipelines using gold standard personal exome variants.
    Hwang S; Kim E; Lee I; Marcotte EM
    Sci Rep; 2015 Dec; 5():17875. PubMed ID: 26639839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calling known variants and identifying new variants while rapidly aligning sequence data.
    VanRaden PM; Bickhart DM; O'Connell JR
    J Dairy Sci; 2019 Apr; 102(4):3216-3229. PubMed ID: 30772032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Benchmarking variant callers in next-generation and third-generation sequencing analysis.
    Pei S; Liu T; Ren X; Li W; Chen C; Xie Z
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32698196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized detection of insertions/deletions (INDELs) in whole-exome sequencing data.
    Kim BY; Park JH; Jo HY; Koo SK; Park MH
    PLoS One; 2017; 12(8):e0182272. PubMed ID: 28792971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Benchmarking workflows to assess performance and suitability of germline variant calling pipelines in clinical diagnostic assays.
    Krishnan V; Utiramerur S; Ng Z; Datta S; Snyder MP; Ashley EA
    BMC Bioinformatics; 2021 Feb; 22(1):85. PubMed ID: 33627090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparison of Variant Calling Pipelines Using Genome in a Bottle as a Reference.
    Cornish A; Guda C
    Biomed Res Int; 2015; 2015():456479. PubMed ID: 26539496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed comparison of two popular variant calling packages for exome and targeted exon studies.
    Warden CD; Adamson AW; Neuhausen SL; Wu X
    PeerJ; 2014; 2():e600. PubMed ID: 25289185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.