BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 27590967)

  • 1. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation-based training for neuroprosthetic control of grasping by amputees.
    Agashe HA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3989-92. PubMed ID: 25570866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping.
    Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL
    J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control?
    Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards Efficient Decoding of Multiple Classes of Motor Imagery Limb Movements Based on EEG Spectral and Time Domain Descriptors.
    Samuel OW; Geng Y; Li X; Li G
    J Med Syst; 2017 Oct; 41(12):194. PubMed ID: 29080913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance neuroprosthetic control by an individual with tetraplegia.
    Collinger JL; Wodlinger B; Downey JE; Wang W; Tyler-Kabara EC; Weber DJ; McMorland AJ; Velliste M; Boninger ML; Schwartz AB
    Lancet; 2013 Feb; 381(9866):557-64. PubMed ID: 23253623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves.
    Wendelken S; Page DM; Davis T; Wark HAC; Kluger DT; Duncan C; Warren DJ; Hutchinson DT; Clark GA
    J Neuroeng Rehabil; 2017 Nov; 14(1):121. PubMed ID: 29178940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analyzing at-home prosthesis use in unilateral upper-limb amputees to inform treatment & device design.
    Spiers AJ; Resnik L; Dollar AM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1273-1280. PubMed ID: 28813996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward improved sensorimotor integration and learning using upper-limb prosthetic devices.
    Gillespie RB; Contreras-Vidal JL; Shewokis PA; O'Malley MK; Brown JD; Agashe H; Gentili R; Davis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5077-80. PubMed ID: 21096030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques.
    Engdahl SM; Christie BP; Kelly B; Davis A; Chestek CA; Gates DH
    J Neuroeng Rehabil; 2015 Jun; 12():53. PubMed ID: 26071402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCA and deep learning based myoelectric grasping control of a prosthetic hand.
    Li C; Ren J; Huang H; Wang B; Zhu Y; Hu H
    Biomed Eng Online; 2018 Aug; 17(1):107. PubMed ID: 30081927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Closed-Loop Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals.
    Fukuma R; Yanagisawa T; Yorifuji S; Kato R; Yokoi H; Hirata M; Saitoh Y; Kishima H; Kamitani Y; Yoshimine T
    PLoS One; 2015; 10(7):e0131547. PubMed ID: 26134845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voluntary phantom hand and finger movements in transhumerai amputees could be used to naturally control polydigital prostheses.
    Jarrasse N; Nicol C; Richer F; Touillet A; Martinet N; Paysant J; De Graaf JB
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1239-1245. PubMed ID: 28813991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 22.