These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

623 related articles for article (PubMed ID: 27590968)

  • 21. Electroencephalography of completely locked-in state patients with amyotrophic lateral sclerosis.
    Maruyama Y; Yoshimura N; Rana A; Malekshahi A; Tonin A; Jaramillo-Gonzalez A; Birbaumer N; Chaudhary U
    Neurosci Res; 2021 Jan; 162():45-51. PubMed ID: 32014573
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The challenge of controlling an auditory BCI in the case of severe motor disability.
    Séguin P; Maby E; Fouillen M; Otman A; Luauté J; Giraux P; Morlet D; Mattout J
    J Neuroeng Rehabil; 2024 Jan; 21(1):9. PubMed ID: 38238759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain-computer interfaces in neurological rehabilitation.
    Daly JJ; Wolpaw JR
    Lancet Neurol; 2008 Nov; 7(11):1032-43. PubMed ID: 18835541
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Is motor-imagery brain-computer interface feasible in stroke rehabilitation?
    Teo WP; Chew E
    PM R; 2014 Aug; 6(8):723-8. PubMed ID: 24429072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting brain-computer interfaces with functional electrical stimulation: potential applications in people with locked-in syndrome.
    Canny E; Vansteensel MJ; van der Salm SMA; Müller-Putz GR; Berezutskaya J
    J Neuroeng Rehabil; 2023 Nov; 20(1):157. PubMed ID: 37980536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.
    Irimia DC; Cho W; Ortner R; Allison BZ; Ignat BE; Edlinger G; Guger C
    Artif Organs; 2017 Nov; 41(11):E178-E184. PubMed ID: 29148137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Semantic and BCI-performance in completely paralyzed patients: Possibility of language attrition in completely locked in syndrome.
    Khalili Ardali M; Rana A; Purmohammad M; Birbaumer N; Chaudhary U
    Brain Lang; 2019 Jul; 194():93-97. PubMed ID: 31151035
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct brain control and communication in paralysis.
    Birbaumer N; Gallegos-Ayala G; Wildgruber M; Silvoni S; Soekadar SR
    Brain Topogr; 2014 Jan; 27(1):4-11. PubMed ID: 23536247
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain-computer interfaces--the key for the conscious brain locked into a paralyzed body.
    Kübler A; Neumann N
    Prog Brain Res; 2005; 150():513-25. PubMed ID: 16186045
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state.
    Käthner I; Kübler A; Halder S
    J Neuroeng Rehabil; 2015 Sep; 12():76. PubMed ID: 26338101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain-machine interfaces for rehabilitation of poststroke hemiplegia.
    Ushiba J; Soekadar SR
    Prog Brain Res; 2016; 228():163-83. PubMed ID: 27590969
    [TBL] [Abstract][Full Text] [Related]  

  • 32. EEG-Based Brain-Computer Interfaces for Communication and Rehabilitation of People with Motor Impairment:
    Lazarou I; Nikolopoulos S; Petrantonakis PC; Kompatsiaris I; Tsolaki M
    Front Hum Neurosci; 2018; 12():14. PubMed ID: 29472849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EEG-Based Brain-Computer Interfaces.
    Wang Y; Nakanishi M; Zhang D
    Adv Exp Med Biol; 2019; 1101():41-65. PubMed ID: 31729671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Brain-computer interfaces in amyotrophic lateral sclerosis: A metanalysis.
    Marchetti M; Priftis K
    Clin Neurophysiol; 2015 Jun; 126(6):1255-1263. PubMed ID: 25449558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and testing an online near-infrared spectroscopy brain-computer interface tailored to an individual with severe congenital motor impairments.
    Schudlo LC; Chau T
    Disabil Rehabil Assist Technol; 2018 Aug; 13(6):581-591. PubMed ID: 28758809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.
    Li M; Liu Y; Wu Y; Liu S; Jia J; Zhang L
    Int J Neurosci; 2014 Jun; 124(6):403-15. PubMed ID: 24079396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transition from the locked in to the completely locked-in state: a physiological analysis.
    Murguialday AR; Hill J; Bensch M; Martens S; Halder S; Nijboer F; Schoelkopf B; Birbaumer N; Gharabaghi A
    Clin Neurophysiol; 2011 May; 122(5):925-33. PubMed ID: 20888292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circadian course of the P300 ERP in patients with amyotrophic lateral sclerosis - implications for brain-computer interfaces (BCI).
    Erlbeck H; Mochty U; Kübler A; Real RG
    BMC Neurol; 2017 Jan; 17(1):3. PubMed ID: 28061886
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain-computer interfaces for neurorehabilitation.
    Sreedharan S; Sitaram R; Paul JS; Kesavadas C
    Crit Rev Biomed Eng; 2013; 41(3):269-79. PubMed ID: 24579648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance Prediction for a Near-Infrared Spectroscopy-Brain-Computer Interface Using Resting-State Functional Connectivity of the Prefrontal Cortex.
    Shin J; Im CH
    Int J Neural Syst; 2018 Dec; 28(10):1850023. PubMed ID: 29914312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.