These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27590974)

  • 1. 3D graphics, virtual reality, and motion-onset visual evoked potentials in neurogaming.
    Beveridge R; Wilson S; Coyle D
    Prog Brain Res; 2016; 228():329-53. PubMed ID: 27590974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurogaming With Motion-Onset Visual Evoked Potentials (mVEPs): Adults Versus Teenagers.
    Beveridge R; Wilson S; Callaghan M; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Apr; 27(4):572-581. PubMed ID: 30869627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The extraction of motion-onset VEP BCI features based on deep learning and compressed sensing.
    Ma T; Li H; Yang H; Lv X; Li P; Liu T; Yao D; Xu P
    J Neurosci Methods; 2017 Jan; 275():80-92. PubMed ID: 27845150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A brain-computer interface using motion-onset visual evoked potential.
    Guo F; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Dec; 5(4):477-85. PubMed ID: 19015582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A brain computer interface based on motion-onset VEPs.
    Guo F; Hong B; Gao X; Gao S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4478-81. PubMed ID: 19163710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials.
    Jin J; Allison BZ; Wang X; Neuper C
    J Neurosci Methods; 2012 Apr; 205(2):265-76. PubMed ID: 22269596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single-Stimulus, Multitarget BCI Based on Retinotopic Mapping of Motion-Onset VEPs.
    Chen J; Li Z; Hong B; Maye A; Engel AK; Zhang D
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):464-470. PubMed ID: 29993456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An N200 speller integrating the spatial profile for the detection of the non-control state.
    Zhang D; Song H; Xu H; Wu W; Gao S; Hong B
    J Neural Eng; 2012 Apr; 9(2):026016. PubMed ID: 22414615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of User Interaction with a Brain-Computer Interface Based on Steady-State Visually Evoked Potentials: Case Study of a Game.
    Leite HMA; de Carvalho SN; Costa TBDS; Attux R; Hornung HH; Arantes DS
    Comput Intell Neurosci; 2018; 2018():4920132. PubMed ID: 29849549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential.
    Ma T; Li H; Deng L; Yang H; Lv X; Li P; Li F; Zhang R; Liu T; Yao D; Xu P
    J Neural Eng; 2017 Apr; 14(2):026015. PubMed ID: 28145274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-Spatial Beamforming Renders a Visual Brain Computer Interface Capable of Exploiting EEG Electrode Phase Shifts in Motion-Onset Target Responses.
    Libert A; Wittevrongel B; Camarrone F; Van Hulle MM
    IEEE Trans Biomed Eng; 2022 May; 69(5):1802-1812. PubMed ID: 34932468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Prototype SSVEP Based Real Time BCI Gaming System.
    Martišius I; Damaševičius R
    Comput Intell Neurosci; 2016; 2016():3861425. PubMed ID: 27051414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visual event-related potentials evoked by using a virtual reality display.
    Fent J; Weisz J
    Acta Physiol Hung; 1999; 86(1):45-55. PubMed ID: 10755169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring motion VEPs for gaze-independent communication.
    Schaeff S; Treder MS; Venthur B; Blankertz B
    J Neural Eng; 2012 Aug; 9(4):045006. PubMed ID: 22832017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immersive BCI with SSVEP in VR head-mounted display.
    Bonkon Koo ; Hwan-Gon Lee ; Yunjun Nam ; Seungjin Choi
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1103-6. PubMed ID: 26736458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An online brain-computer interface using non-flashing visual evoked potentials.
    Liu T; Goldberg L; Gao S; Hong B
    J Neural Eng; 2010 Jun; 7(3):036003. PubMed ID: 20404396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.