These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

720 related articles for article (PubMed ID: 27591147)

  • 61. Dynamic-flip-angle ECG-gating with nuisance signal regression improves resting-state BOLD functional connectivity mapping by reducing cardiogenic noise.
    Hu C; Tokoglu F; Scheinost D; Qiu M; Shen X; Peters DC; Galiana G; Constable RT
    Magn Reson Med; 2019 Sep; 82(3):911-923. PubMed ID: 31016782
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Examining the resting-state vascular connectivity using fMRA in comparison with fMRI: a preliminary study.
    Park CA; Kang CK; Kim YB; Cho ZH
    Neuroreport; 2015 Aug; 26(11):623-8. PubMed ID: 26076337
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Estimation of static and dynamic functional connectivity in resting-state fMRI using zero-frequency resonator.
    Das SK; Sao AK; Biswal BB
    Hum Brain Mapp; 2024 Jun; 45(9):e26606. PubMed ID: 38895977
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Cluster analysis of resting-state fMRI time series.
    Mezer A; Yovel Y; Pasternak O; Gorfine T; Assaf Y
    Neuroimage; 2009 May; 45(4):1117-25. PubMed ID: 19146962
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity.
    Donnelly-Kehoe P; Saenger VM; Lisofsky N; Kühn S; Kringelbach ML; Schwarzbach J; Lindenberger U; Deco G
    Hum Brain Mapp; 2019 Jul; 40(10):2967-2980. PubMed ID: 30882961
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Functional connectivity analysis of the brain network using resting-state FMRI].
    Hayashi T
    Brain Nerve; 2011 Dec; 63(12):1307-18. PubMed ID: 22147450
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transient Arousal Modulations Contribute to Resting-State Functional Connectivity Changes Associated with Head Motion Parameters.
    Gu Y; Han F; Sainburg LE; Liu X
    Cereb Cortex; 2020 Sep; 30(10):5242-5256. PubMed ID: 32406488
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.
    Peer M; Abboud S; Hertz U; Amedi A; Arzy S
    Hum Brain Mapp; 2016 Jul; 37(7):2407-18. PubMed ID: 27018565
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Age-related differences in the dynamic architecture of intrinsic networks.
    Madhyastha TM; Grabowski TJ
    Brain Connect; 2014 May; 4(4):231-41. PubMed ID: 24329046
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.
    Kannurpatti SS; Sanganahalli BG; Herman P; Hyder F
    NMR Biomed; 2015 Nov; 28(11):1579-88. PubMed ID: 26439799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Distributed BOLD and CBV-weighted resting-state networks in the mouse brain.
    Sforazzini F; Schwarz AJ; Galbusera A; Bifone A; Gozzi A
    Neuroimage; 2014 Feb; 87():403-15. PubMed ID: 24080504
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Integrated strategy for improving functional connectivity mapping using multiecho fMRI.
    Kundu P; Brenowitz ND; Voon V; Worbe Y; Vértes PE; Inati SJ; Saad ZS; Bandettini PA; Bullmore ET
    Proc Natl Acad Sci U S A; 2013 Oct; 110(40):16187-92. PubMed ID: 24038744
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Evaluating the Sensitivity of Resting-State BOLD Variability to Age and Cognition after Controlling for Motion and Cardiovascular Influences: A Network-Based Approach.
    Millar PR; Petersen SE; Ances BM; Gordon BA; Benzinger TLS; Morris JC; Balota DA
    Cereb Cortex; 2020 Oct; 30(11):5686-5701. PubMed ID: 32515824
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Amplitudes of resting-state functional networks - investigation into their correlates and biophysical properties.
    Lee S; Bijsterbosch JD; Almagro FA; Elliott L; McCarthy P; Taschler B; Sala-Llonch R; Beckmann CF; Duff EP; Smith SM; Douaud G
    Neuroimage; 2023 Jan; 265():119779. PubMed ID: 36462729
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pharmacological insight into neurotransmission origins of resting-state functional connectivity: α2-adrenergic agonist vs antagonist.
    Nasrallah FA; Low SA; Lew SK; Chen K; Chuang KH
    Neuroimage; 2014 Dec; 103():364-373. PubMed ID: 25241086
    [TBL] [Abstract][Full Text] [Related]  

  • 76. State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State.
    Geerligs L; Rubinov M; Cam-Can ; Henson RN
    J Neurosci; 2015 Oct; 35(41):13949-61. PubMed ID: 26468196
    [TBL] [Abstract][Full Text] [Related]  

  • 77. GABAergic effect on resting-state functional connectivity: Dynamics under pharmacological antagonism.
    Nasrallah FA; Singh KKDR; Yeow LY; Chuang KH
    Neuroimage; 2017 Apr; 149():53-62. PubMed ID: 28119136
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Network-specific effects of age and in-scanner subject motion: a resting-state fMRI study of 238 healthy adults.
    Mowinckel AM; Espeseth T; Westlye LT
    Neuroimage; 2012 Nov; 63(3):1364-73. PubMed ID: 22992492
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture.
    Kinany N; Pirondini E; Micera S; Van De Ville D
    Neuron; 2020 Nov; 108(3):424-435.e4. PubMed ID: 32910894
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The relationship between BOLD and neural activity arises from temporally sparse events.
    Zhang X; Pan WJ; Keilholz SD
    Neuroimage; 2020 Feb; 207():116390. PubMed ID: 31785420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.