These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 27591387)

  • 1. Polymorphism and phylogenetic species delimitation in filamentous fungi from predominant mycobiota in withered grapes.
    Lorenzini M; Cappello MS; Logrieco A; Zapparoli G
    Int J Food Microbiol; 2016 Dec; 238():56-62. PubMed ID: 27591387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filamentous fungi associated with natural infection of noble rot on withered grapes.
    Lorenzini M; Simonato B; Favati F; Bernardi P; Sbarbati A; Zapparoli G
    Int J Food Microbiol; 2018 May; 272():83-86. PubMed ID: 29550687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization and pathogenicity of Alternaria spp. strains associated with grape bunch rot during post-harvest withering.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2014 Sep; 186():1-5. PubMed ID: 24974273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential ochratoxin A producers from wine grapes in Argentina and Brazil.
    Da RR; Palacios V; Combina M; Fraga ME; De OR; Magnoli CE; Dalcero AM
    Food Addit Contam; 2002 Apr; 19(4):408-14. PubMed ID: 11962699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Neofusicoccum parvum from withered grapes: strain characterization, pathogenicity and its detrimental effects on passito wine aroma.
    Lorenzini M; Cappello MS; Zapparoli G
    J Appl Microbiol; 2015 Nov; 119(5):1335-44. PubMed ID: 26274522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epiphytic bacteria from withered grapes and their antagonistic effects on grape-rotting fungi.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2020 Apr; 319():108505. PubMed ID: 31911210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and infection of Cladosporium, Fusarium, Epicoccum and Aureobasidium in withered rotten grapes during post-harvest dehydration.
    Lorenzini M; Zapparoli G
    Antonie Van Leeuwenhoek; 2015 Nov; 108(5):1171-80. PubMed ID: 26459338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yeast-like fungi and yeasts in withered grape carposphere: Characterization of Aureobasidium pullulans population and species diversity.
    Lorenzini M; Zapparoli G
    Int J Food Microbiol; 2019 Jan; 289():223-230. PubMed ID: 30391797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions.
    Oliveira M; Arenas M; Lage O; Cunha M; Amorim MI
    Lett Appl Microbiol; 2018 Jan; 66(1):93-102. PubMed ID: 29139139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the region of origin on the mycobiota of grapes with emphasis on Aspergillus and Penicillium species.
    Serra R; Lourenço A; Alípio P; Venâncio A
    Mycol Res; 2006 Aug; 110(Pt 8):971-8. PubMed ID: 16891107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycotoxin-producing and other fungi isolated from grapes for wine production, with particular emphasis on ochratoxin A.
    Serra R; Braga A; Venâncio A
    Res Microbiol; 2005 May; 156(4):515-21. PubMed ID: 15862450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungal diversity, incidence and mycotoxin contamination in grapes from two agro-climatic Spanish regions with emphasis on Aspergillus species.
    García-Cela E; Crespo-Sempere A; Gil-Serna J; Porqueres A; Marin S
    J Sci Food Agric; 2015 Jun; 95(8):1716-29. PubMed ID: 25131651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postharvest grape infection of Botrytis cinerea and its interactions with other moulds under withering conditions to produce noble-rotten grapes.
    Lorenzini M; Azzolini M; Tosi E; Zapparoli G
    J Appl Microbiol; 2013 Mar; 114(3):762-70. PubMed ID: 23163324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspergillus, Penicillium and Cladosporium species associated with dried date fruits collected in the Perugia (Umbria, Central Italy) market.
    Quaglia M; Santinelli M; Sulyok M; Onofri A; Covarelli L; Beccari G
    Int J Food Microbiol; 2020 Jun; 322():108585. PubMed ID: 32179333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The microbial ecology of wine grape berries.
    Barata A; Malfeito-Ferreira M; Loureiro V
    Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of (-)-geosmin on grapes: on the complementary action of two fungi, botrytis cinerea and penicillium expansum.
    La Guerche S; Chamont S; Blancard D; Dubourdieu D; Darriet P
    Antonie Van Leeuwenhoek; 2005 Aug; 88(2):131-9. PubMed ID: 16096689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Description of a taxonomically undefined Sclerotiniaceae strain from withered rotten-grapes.
    Lorenzini M; Zapparoli G
    Antonie Van Leeuwenhoek; 2016 Feb; 109(2):197-205. PubMed ID: 26581438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PCR ITS-RFLP: A useful method for identifying filamentous fungi isolates on grapes.
    Diguta CF; Vincent B; Guilloux-Benatier M; Alexandre H; Rousseaux S
    Food Microbiol; 2011 Sep; 28(6):1145-54. PubMed ID: 21645813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Spanish grape mycobiota and ochratoxin A production by Isolates of Aspergillus tubingensis and other members of Aspergillus section Nigri.
    Medina A; Mateo R; López-Ocaña L; Valle-Algarra FM; Jiménez M
    Appl Environ Microbiol; 2005 Aug; 71(8):4696-702. PubMed ID: 16085865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An overview of fungal community diversity in diseased hop plantations.
    Phalip V; Hatsch D; Laugel B; Jeltsch JM
    FEMS Microbiol Ecol; 2006 May; 56(2):321-9. PubMed ID: 16629761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.