These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 27591438)
1. Impact of summer drought on isoprenoid emissions and carbon sink of three Scots pine provenances. Lüpke M; Leuchner M; Steinbrecher R; Menzel A Tree Physiol; 2016 Nov; 36(11):1382-1399. PubMed ID: 27591438 [TBL] [Abstract][Full Text] [Related]
2. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest. Eller AS; Young LL; Trowbridge AM; Monson RK Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962 [TBL] [Abstract][Full Text] [Related]
3. Differential physiological and genetic responses of five European Scots pine provenances to induced water stress. Carvalho A; Pavia I; Fernandes C; Pires J; Correia C; Bacelar E; Moutinho-Pereira J; Gaspar MJ; Bento J; Silva ME; Lousada JL; Lima-Brito J J Plant Physiol; 2017 Aug; 215():100-109. PubMed ID: 28618258 [TBL] [Abstract][Full Text] [Related]
4. Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography. Seidel H; Schunk C; Matiu M; Menzel A Front Plant Sci; 2016; 7():1247. PubMed ID: 27630643 [TBL] [Abstract][Full Text] [Related]
5. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. Poyatos R; Aguadé D; Galiano L; Mencuccini M; Martínez-Vilalta J New Phytol; 2013 Oct; 200(2):388-401. PubMed ID: 23594415 [TBL] [Abstract][Full Text] [Related]
6. Contrasting ecophysiological strategies related to drought: the case of a mixed stand of Scots pine (Pinus sylvestris) and a submediterranean oak (Quercus subpyrenaica). Martín-Gómez P; Aguilera M; Pemán J; Gil-Pelegrín E; Ferrio JP Tree Physiol; 2017 Nov; 37(11):1478-1492. PubMed ID: 29040771 [TBL] [Abstract][Full Text] [Related]
7. Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Eilmann B; Zweifel R; Buchmann N; Fonti P; Rigling A Tree Physiol; 2009 Aug; 29(8):1011-20. PubMed ID: 19483185 [TBL] [Abstract][Full Text] [Related]
8. Central European 2018 hot drought shifts scots pine forest to its tipping point. Haberstroh S; Werner C; Grün M; Kreuzwieser J; Seifert T; Schindler D; Christen A Plant Biol (Stuttg); 2022 Dec; 24(7):1186-1197. PubMed ID: 35869655 [TBL] [Abstract][Full Text] [Related]
9. Growth and resilience responses of Scots pine to extreme droughts across Europe depend on predrought growth conditions. Bose AK; Gessler A; Bolte A; Bottero A; Buras A; Cailleret M; Camarero JJ; Haeni M; Hereş AM; Hevia A; Lévesque M; Linares JC; Martinez-Vilalta J; Matías L; Menzel A; Sánchez-Salguero R; Saurer M; Vennetier M; Ziche D; Rigling A Glob Chang Biol; 2020 Aug; 26(8):4521-4537. PubMed ID: 32388882 [TBL] [Abstract][Full Text] [Related]
10. Effects of prolonged drought stress on Scots pine seedling carbon allocation. Aaltonen H; Lindén A; Heinonsalo J; Biasi C; Pumpanen J Tree Physiol; 2017 Apr; 37(4):418-427. PubMed ID: 27974653 [TBL] [Abstract][Full Text] [Related]
11. Know your limits? Climate extremes impact the range of Scots pine in unexpected places. Julio Camarero J; Gazol A; Sancho-Benages S; Sangüesa-Barreda G Ann Bot; 2015 Nov; 116(6):917-27. PubMed ID: 26292992 [TBL] [Abstract][Full Text] [Related]
12. Forest vulnerability to extreme climatic events in Romanian Scots pine forests. Sidor CG; Camarero JJ; Popa I; Badea O; Apostol EN; Vlad R Sci Total Environ; 2019 Aug; 678():721-727. PubMed ID: 31078863 [TBL] [Abstract][Full Text] [Related]
13. Effects of temperature and drought manipulations on seedlings of Scots pine provenances. Taeger S; Sparks TH; Menzel A Plant Biol (Stuttg); 2015 Mar; 17(2):361-72. PubMed ID: 25262794 [TBL] [Abstract][Full Text] [Related]
14. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings. Tiiva P; Häikiö E; Kasurinen A Tree Physiol; 2018 Oct; 38(10):1461-1475. PubMed ID: 29648619 [TBL] [Abstract][Full Text] [Related]
15. Diverging growth trends and climate sensitivities of individual pine trees after the 1976 extreme drought. Martinez Del Castillo E; Torbenson MCA; Reinig F; Konter O; Ziaco E; Büntgen U; Esper J Sci Total Environ; 2024 Oct; 946():174370. PubMed ID: 38945248 [TBL] [Abstract][Full Text] [Related]
16. Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought. Junker-Frohn LV; Kleiber A; Jansen K; Gessler A; Kreuzwieser J; Ensminger I Tree Physiol; 2019 Oct; 39(10):1750-1766. PubMed ID: 31287896 [TBL] [Abstract][Full Text] [Related]
17. Drought-induced mortality in Scots pine: opening the metabolic black box. MacAllister S; Mencuccini M; Sommer U; Engel J; Hudson A; Salmon Y; Dexter KG Tree Physiol; 2019 Aug; 39(8):1358-1370. PubMed ID: 31038161 [TBL] [Abstract][Full Text] [Related]
18. Compensatory Growth of Scots Pine Seedlings Mitigates Impacts of Multiple Droughts Within and Across Years. Seidel H; Matiu M; Menzel A Front Plant Sci; 2019; 10():519. PubMed ID: 31105722 [TBL] [Abstract][Full Text] [Related]
19. Wood structural differences between northern and southern beech provenances growing at a moderate site. Eilmann B; Sterck F; Wegner L; de Vries SM; von Arx G; Mohren GM; den Ouden J; Sass-Klaassen U Tree Physiol; 2014 Aug; 34(8):882-93. PubMed ID: 25163729 [TBL] [Abstract][Full Text] [Related]
20. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates. Sangüesa-Barreda G; Linares JC; Camarero JJ Tree Physiol; 2012 May; 32(5):585-98. PubMed ID: 22539634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]