These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27591903)

  • 1. Polymer surface properties control the function of heavy meromyosin in dynamic nanodevices.
    Hanson KL; Fulga F; Dobroiu S; Solana G; Kaspar O; Tokarova V; Nicolau DV
    Biosens Bioelectron; 2017 Jul; 93():305-314. PubMed ID: 27591903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface hydrophobicity modulates the operation of actomyosin-based dynamic nanodevices.
    Nicolau DV; Solana G; Kekic M; Fulga F; Mahanivong C; Wright J; Ivanova EP; dos Remedios CG
    Langmuir; 2007 Oct; 23(21):10846-54. PubMed ID: 17854206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mode of heavy meromyosin adsorption and motor function correlated with surface hydrophobicity and charge.
    Albet-Torres N; O'Mahony J; Charlton C; Balaz M; Lisboa P; Aastrup T; Månsson A; Nicholls IA
    Langmuir; 2007 Oct; 23(22):11147-56. PubMed ID: 17696458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy meromyosin molecules extending more than 50 nm above adsorbing electronegative surfaces.
    Persson M; Albet-Torres N; Ionov L; Sundberg M; Höök F; Diez S; Månsson A; Balaz M
    Langmuir; 2010 Jun; 26(12):9927-36. PubMed ID: 20337414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin filament motility induced variation of resonance frequency and rigidity of polymer surfaces studied by quartz crystal microbalance.
    van Zalinge H; Aveyard J; Hajne J; Persson M; Mansson A; Nicolau DV
    Langmuir; 2012 Oct; 28(42):15033-7. PubMed ID: 22988957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motility of actin filaments on micro-contact printed myosin patterns.
    Hajne J; Hanson KL; van Zalinge H; Nicolau DV
    IEEE Trans Nanobioscience; 2015 Apr; 14(3):313-22. PubMed ID: 25622324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Controlled Properties of Myosin Studied by Electric Field Modulation.
    van Zalinge H; Ramsey LC; Aveyard J; Persson M; Mansson A; Nicolau DV
    Langmuir; 2015 Aug; 31(30):8354-61. PubMed ID: 26161584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Surface Silanization for Actin-Myosin Based Nanodevices and Biocompatibility of New Polymer Resists.
    Lindberg FW; Norrby M; Rahman MA; Salhotra A; Takatsuki H; Jeppesen S; Linke H; Månsson A
    Langmuir; 2018 Jul; 34(30):8777-8784. PubMed ID: 29969272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of surface adsorption on catalytic activity of heavy meromyosin studied using a fluorescent ATP analogue.
    Balaz M; Sundberg M; Persson M; Kvassman J; Månsson A
    Biochemistry; 2007 Jun; 46(24):7233-51. PubMed ID: 17523677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro assays of molecular motors--impact of motor-surface interactions.
    Mansson A; Balaz M; Albet-Torres N; Rosengren KJ
    Front Biosci; 2008 May; 13():5732-54. PubMed ID: 18508618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tail of myosin reduces actin filament velocity in the in vitro motility assay.
    Guo B; Guilford WH
    Cell Motil Cytoskeleton; 2004 Dec; 59(4):264-72. PubMed ID: 15505809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantized velocities at low myosin densities in an in vitro motility assay.
    Uyeda TQ; Warrick HM; Kron SJ; Spudich JA
    Nature; 1991 Jul; 352(6333):307-11. PubMed ID: 1852205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-Carrying Ability of Actin Filaments Interacting with Myosin Motors in a Biological Motility System In Vitro.
    Sunada Y; Hatori K
    Macromol Biosci; 2022 May; 22(5):e2100471. PubMed ID: 35261163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin motion on microlithographically functionalized myosin surfaces and tracks.
    Nicolau DV; Suzuki H; Mashiko S; Taguchi T; Yoshikawa S
    Biophys J; 1999 Aug; 77(2):1126-34. PubMed ID: 10423457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of widely used methods to remove nonfunctional myosin heads for the in vitro motility assay.
    Rahman MA; Salhotra A; Månsson A
    J Muscle Res Cell Motil; 2018 Dec; 39(5-6):175-187. PubMed ID: 30850933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Actin filament guidance on a chip: toward high-throughput assays and lab-on-a-chip applications.
    Sundberg M; Bunk R; Albet-Torres N; Kvennefors A; Persson F; Montelius L; Nicholls IA; Ghatnekar-Nilsson S; Omling P; Tågerud S; Månsson A
    Langmuir; 2006 Aug; 22(17):7286-95. PubMed ID: 16893228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trimethylamine N-oxide suppresses the activity of the actomyosin motor.
    Kumemoto R; Yusa K; Shibayama T; Hatori K
    Biochim Biophys Acta; 2012 Oct; 1820(10):1597-604. PubMed ID: 22705940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional growth of heavy meromyosin clusters along actin filaments revealed by real-time fluorescence microscopy.
    Hirakawa R; Nishikawa Y; Uyeda TQP; Tokuraku K
    Cytoskeleton (Hoboken); 2017 Dec; 74(12):482-489. PubMed ID: 28888060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of structural dynamics of actin in class-specific myosin motility.
    Noguchi TQ; Morimatsu M; Iwane AH; Yanagida T; Uyeda TQ
    PLoS One; 2015; 10(5):e0126262. PubMed ID: 25945499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myosin subfragment-1 is sufficient to move actin filaments in vitro.
    Toyoshima YY; Kron SJ; McNally EM; Niebling KR; Toyoshima C; Spudich JA
    Nature; 1987 Aug 6-12; 328(6130):536-9. PubMed ID: 2956522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.