These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27592076)

  • 1. Mechanical testing for three-dimensional motion analysis reliability.
    Miller E; Kaufman K; Kingsbury T; Wolf E; Wilken J; Wyatt M
    Gait Posture; 2016 Oct; 50():116-119. PubMed ID: 27592076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The efficacy of a video-based marker-less tracking system for gait analysis.
    Ong A; Harris IS; Hamill J
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1089-1095. PubMed ID: 28569549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane.
    Sandau M; Koblauch H; Moeslund TB; Aanæs H; Alkjær T; Simonsen EB
    Med Eng Phys; 2014 Sep; 36(9):1168-75. PubMed ID: 25085672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modified conventional gait model versus cluster tracking: Test-retest reliability, agreement and impact of inverse kinematics with joint constraints on kinematic and kinetic data.
    Mentiplay BF; Clark RA
    Gait Posture; 2018 Jul; 64():75-83. PubMed ID: 29879631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliable sagittal plane kinematic gait assessments are feasible using low-cost webcam technology.
    Saner RJ; Washabaugh EP; Krishnan C
    Gait Posture; 2017 Jul; 56():19-23. PubMed ID: 28482201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.
    Ross SA; Rice C; Von Behren K; Meyer A; Alexander R; Murfin S
    Physiother Theory Pract; 2015 Jan; 31(1):53-60. PubMed ID: 25230893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-vivo quantification of dynamic hip joint center errors and soft tissue artifact.
    Fiorentino NM; Atkins PR; Kutschke MJ; Foreman KB; Anderson AE
    Gait Posture; 2016 Oct; 50():246-251. PubMed ID: 27693944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity and Intrarater Reliability of 2-Dimensional Motion Analysis Using a Handheld Tablet Compared to Traditional 3-Dimensional Motion Analysis.
    Belyea BC; Lewis E; Gabor Z; Jackson J; King DL
    J Sport Rehabil; 2015 Nov; 24(4):. PubMed ID: 25612081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait patterns in children with limb length discrepancy.
    Aiona M; Do KP; Emara K; Dorociak R; Pierce R
    J Pediatr Orthop; 2015; 35(3):280-4. PubMed ID: 25075889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically corrected coupled motion during gait analysis using a model-based approach.
    Bonnechère B; Sholukha V; Salvia P; Rooze M; Van Sint Jan S
    Gait Posture; 2015 Jan; 41(1):319-22. PubMed ID: 25300240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the hip joint centre in human motion analysis: a systematic review.
    Kainz H; Carty CP; Modenese L; Boyd RN; Lloyd DG
    Clin Biomech (Bristol, Avon); 2015 May; 30(4):319-29. PubMed ID: 25753697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional clinical measurement of bilateral hip and knee rotations.
    Pearcy MJ; Cheng PL
    Australas Phys Eng Sci Med; 2000 Sep; 23(3):114-8. PubMed ID: 11210155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Verification of an improved hip joint center prediction method.
    Miller EJ; Kaufman KR
    Gait Posture; 2018 Jan; 59():174-176. PubMed ID: 29035841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of a subject-specific musculoskeletal model to the uncertainties on the joint axes location.
    Martelli S; Valente G; Viceconti M; Taddei F
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1555-63. PubMed ID: 24963785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concurrent validity and reliability of two-dimensional video analysis of hip and knee joint motion during mechanical lifting.
    Norris BS; Olson SL
    Physiother Theory Pract; 2011 Oct; 27(7):521-30. PubMed ID: 21568816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.
    Eltoukhy M; Oh J; Kuenze C; Signorile J
    Gait Posture; 2017 Jan; 51():77-83. PubMed ID: 27721202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical characterization of slope walking using musculoskeletal model simulation.
    Kawada M; Hata K; Kiyama R; Maeda T; Yone K
    Acta Bioeng Biomech; 2018; 20(1):117-125. PubMed ID: 29658520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of different force and pressure measuring transducers on lower extremity kinematics measured during walking.
    Greenhalgh A; Taylor PJ; Sinclair J
    Gait Posture; 2014 Jul; 40(3):476-9. PubMed ID: 24909580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.
    Schwartz M; Dixon PC
    PLoS One; 2018; 13(1):e0189984. PubMed ID: 29293565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.