These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
651 related articles for article (PubMed ID: 27592131)
21. Paclitaxel-loaded redox-sensitive nanoparticles based on hyaluronic acid-vitamin E succinate conjugates for improved lung cancer treatment. Song Y; Cai H; Yin T; Huo M; Ma P; Zhou J; Lai W Int J Nanomedicine; 2018; 13():1585-1600. PubMed ID: 29588586 [TBL] [Abstract][Full Text] [Related]
22. Dual targeting folate-conjugated hyaluronic acid polymeric micelles for paclitaxel delivery. Liu Y; Sun J; Cao W; Yang J; Lian H; Li X; Sun Y; Wang Y; Wang S; He Z Int J Pharm; 2011 Dec; 421(1):160-9. PubMed ID: 21945183 [TBL] [Abstract][Full Text] [Related]
23. Paclitaxel/IR1061-Co-Loaded Protein Nanoparticle for Tumor-Targeted and pH/NIR-II-Triggered Synergistic Photothermal-Chemotherapy. He L; Qing F; Li M; Lan D Int J Nanomedicine; 2020; 15():2337-2349. PubMed ID: 32308385 [TBL] [Abstract][Full Text] [Related]
24. Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer. Yang H; Tang C; Yin C Acta Biomater; 2018 Jun; 73():400-411. PubMed ID: 29660508 [TBL] [Abstract][Full Text] [Related]
25. Photo-responsive and NGR-mediated multifunctional nanostructured lipid carrier for tumor-specific therapy. Yang Y; Xie X; Yang Y; Zhang H; Mei X J Pharm Sci; 2015 Apr; 104(4):1328-39. PubMed ID: 25630979 [TBL] [Abstract][Full Text] [Related]
26. Ovarian cancer targeted hyaluronic acid-based nanoparticle system for paclitaxel delivery to overcome drug resistance. Wang L; Jia E Drug Deliv; 2016 Jun; 23(5):1810-7. PubMed ID: 26530693 [TBL] [Abstract][Full Text] [Related]
27. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Yang XY; Li YX; Li M; Zhang L; Feng LX; Zhang N Cancer Lett; 2013 Jul; 334(2):338-45. PubMed ID: 22776563 [TBL] [Abstract][Full Text] [Related]
28. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Yin T; Wang L; Yin L; Zhou J; Huo M Biomaterials; 2015 Aug; 61():10-25. PubMed ID: 25996409 [TBL] [Abstract][Full Text] [Related]
29. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Feng C; Zhang H; Chen J; Wang S; Xin Y; Qu Y; Zhang Q; Ji W; Yamashita F; Rui M; Xu X Int J Pharm; 2019 Apr; 560():191-204. PubMed ID: 30769131 [TBL] [Abstract][Full Text] [Related]
30. Targeted Nanostructured Lipid Carriers for Delivery of Paclitaxel to Cancer Cells: Preparation, Characterization, and Cell Toxicity. Rezazadeh M; Emami J; Hassanzadeh F; Sadeghi H; Rostami M; Mohammadkhani H Curr Drug Deliv; 2017; 14(8):1189-1200. PubMed ID: 28472908 [TBL] [Abstract][Full Text] [Related]
31. Free paclitaxel loaded PEGylated-paclitaxel nanoparticles: preparation and comparison with other paclitaxel systems in vitro and in vivo. Lu J; Chuan X; Zhang H; Dai W; Wang X; Wang X; Zhang Q Int J Pharm; 2014 Aug; 471(1-2):525-35. PubMed ID: 24858391 [TBL] [Abstract][Full Text] [Related]
32. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. Liu B; Han L; Liu J; Han S; Chen Z; Jiang L Int J Nanomedicine; 2017; 12():955-968. PubMed ID: 28203075 [TBL] [Abstract][Full Text] [Related]
33. A reconstituted thermosensitive hydrogel system based on paclitaxel-loaded amphiphilic copolymer nanoparticles and antitumor efficacy. Liang Y; Dong C; Zhang J; Deng L; Dong A Drug Dev Ind Pharm; 2017 Jun; 43(6):972-979. PubMed ID: 28121206 [TBL] [Abstract][Full Text] [Related]
34. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer. He Z; Huang J; Xu Y; Zhang X; Teng Y; Huang C; Wu Y; Zhang X; Zhang H; Sun W Oncotarget; 2015 Dec; 6(39):42150-68. PubMed ID: 26517524 [TBL] [Abstract][Full Text] [Related]
35. Biological evaluation of redox-sensitive micelles based on hyaluronic acid-deoxycholic acid conjugates for tumor-specific delivery of paclitaxel. Li J; Yin T; Wang L; Yin L; Zhou J; Huo M Int J Pharm; 2015 Apr; 483(1-2):38-48. PubMed ID: 25655715 [TBL] [Abstract][Full Text] [Related]
36. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Vinothini K; Rajendran NK; Ramu A; Elumalai N; Rajan M Biomed Pharmacother; 2019 Feb; 110():906-917. PubMed ID: 30572195 [TBL] [Abstract][Full Text] [Related]
37. Novel Water-Borne Polyurethane Nanomicelles for Cancer Chemotherapy: Higher Efficiency of Folate Receptors Than TRAIL Receptors in a Cancerous Balb/C Mouse Model. Ajorlou E; Khosroushahi AY; Yeganeh H Pharm Res; 2016 Jun; 33(6):1426-39. PubMed ID: 26908046 [TBL] [Abstract][Full Text] [Related]
38. Co-delivery of paclitaxel (PTX) and docosahexaenoic acid (DHA) by targeting lipid nanoemulsions for cancer therapy. Li B; Tan T; Chu W; Zhang Y; Ye Y; Wang S; Qin Y; Tang J; Cao X Drug Deliv; 2022 Dec; 29(1):75-88. PubMed ID: 34964421 [TBL] [Abstract][Full Text] [Related]
39. An arginine derivative contained nanostructure lipid carriers with pH-sensitive membranolytic capability for lysosomolytic anti-cancer drug delivery. Li S; Su Z; Sun M; Xiao Y; Cao F; Huang A; Li H; Ping Q; Zhang C Int J Pharm; 2012 Oct; 436(1-2):248-57. PubMed ID: 22732672 [TBL] [Abstract][Full Text] [Related]
40. Sequential delivery of VEGF siRNA and paclitaxel for PVN destruction, anti-angiogenesis, and tumor cell apoptosis procedurally via a multi-functional polymer micelle. Yang Y; Meng Y; Ye J; Xia X; Wang H; Li L; Dong W; Jin D; Liu Y J Control Release; 2018 Oct; 287():103-120. PubMed ID: 30144476 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]