BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27592197)

  • 1. Mutagenicity of heteroaromatic amines: Computational study on the influence of methyl substituents.
    Borosky GL
    J Mol Graph Model; 2016 Sep; 69():92-102. PubMed ID: 27592197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relative stabilities of nitrenium ions derived from heterocyclic amine food carcinogens: relationship to mutagenicity.
    Ford GP; Griffin GR
    Chem Biol Interact; 1992 Jan; 81(1-2):19-33. PubMed ID: 1730146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity (QSAR) relationships of mutagenic aromatic and heterocyclic amines.
    Hatch FT; Colvin ME
    Mutat Res; 1997 May; 376(1-2):87-96. PubMed ID: 9202742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultimate carcinogenic metabolites from aromatic and heterocyclic aromatic amines: a computational study in relation to their mutagenic potency.
    Borosky GL
    Chem Res Toxicol; 2007 Feb; 20(2):171-80. PubMed ID: 17261035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C8-linked bulky guanosine DNA adducts: experimental and computational insights into adduct conformational preferences and resulting mutagenicity.
    Millen AL; Sharma P; Wetmore SD
    Future Med Chem; 2012 Oct; 4(15):1981-2007. PubMed ID: 23088278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carcinogenic carbocyclic and heterocyclic aromatic amines: a DFT study concerning their mutagenic potency.
    Borosky GL
    J Mol Graph Model; 2008 Nov; 27(4):459-65. PubMed ID: 18799337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of substitution site upon the oxidation potentials of alkylanilines, the mutagenicities of N-hydroxyalkylanilines, and the conformations of alkylaniline-DNA adducts.
    Marques MM; Mourato LL; Amorim MT; Santos MA; Melchior WB; Beland FA
    Chem Res Toxicol; 1997 Nov; 10(11):1266-74. PubMed ID: 9403181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in silico method for predicting Ames activities of primary aromatic amines by calculating the stabilities of nitrenium ions.
    Bentzien J; Hickey ER; Kemper RA; Brewer ML; Dyekjaer JD; East SP; Whittaker M
    J Chem Inf Model; 2010 Feb; 50(2):274-97. PubMed ID: 20078034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical studies of chemical reactivity of metabolically activated forms of aromatic amines toward DNA.
    Shamovsky I; Ripa L; Blomberg N; Eriksson LA; Hansen P; Mee C; Tyrchan C; O'Donovan M; Sjö P
    Chem Res Toxicol; 2012 Oct; 25(10):2236-52. PubMed ID: 22946514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and decomposition of an ester derivative of the procarcinogen and promutagen, PhIP, 2-amino-1-methyl-6-phenyl-1H-imidazo[4,5-b]pyridine: unusual nitrenium ion chemistry.
    Nguyen TM; Novak M
    J Org Chem; 2007 Jun; 72(13):4698-706. PubMed ID: 17542636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical synthesis of 2'-deoxyguanosine-C8 adducts with heterocyclic amines: an application to synthesis of oligonucleotides site-specifically adducted with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine.
    Takamura-Enya T; Ishikawa S; Mochizuki M; Wakabayashi K
    Chem Res Toxicol; 2006 Jun; 19(6):770-8. PubMed ID: 16780355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-chemical studies on mutagenicity of aromatic and heteroaromatic amines.
    Borosky GL
    Front Biosci (Schol Ed); 2013 Jan; 5(2):600-10. PubMed ID: 23277072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations.
    Shamovsky I; Ripa L; Narjes F; Bonn B; Schiesser S; Terstiege I; Tyrchan C
    J Med Chem; 2021 Jun; 64(12):8545-8563. PubMed ID: 34110134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and quantum chemical factors affecting mutagenic potency of aminoimidazo-azaarenes.
    Hatch FT; Colvin ME; Seidl ET
    Environ Mol Mutagen; 1996; 27(4):314-30. PubMed ID: 8665874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine, pentoxifylline and theophylline form stacking complexes with IQ-type heterocyclic aromatic amines.
    Woziwodzka A; Gwizdek-Wiśniewska A; Piosik J
    Bioorg Chem; 2011 Feb; 39(1):10-7. PubMed ID: 21146849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Modeling of the Major DNA Adduct Formed from Food Mutagen Ochratoxin A in NarI Two-Base Deletion Duplexes: Impact of Sequence Context and Adduct Ionization on Conformational Preference and Mutagenicity.
    Kathuria P; Sharma P; Manderville RA; Wetmore SD
    Chem Res Toxicol; 2017 Aug; 30(8):1582-1591. PubMed ID: 28719194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the forces of stabilizing complexes between chlorophylls and heterocyclic amine mutagens.
    Dashwood R; Yamane S; Larsen R
    Environ Mol Mutagen; 1996; 27(3):211-8. PubMed ID: 8625957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex formation of heterocyclic amines with porphyrins: its use in detection and prevention.
    Hayatsu H
    Princess Takamatsu Symp; 1995; 23():172-80. PubMed ID: 8844808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum chemical modeling of the inhibition mechanism of monoamine oxidase by oxazolidinone and analogous heterocyclic compounds.
    Erdem SS; Özpınar GA; Boz Ü
    J Enzyme Inhib Med Chem; 2014 Feb; 29(1):81-6. PubMed ID: 23323992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.