BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 27592290)

  • 1. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.
    Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS
    J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and experimental validation of trabecular bone damage, softening and densification under large compressive strains.
    Hosseini HS; Pahr DH; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():93-102. PubMed ID: 23032429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic and strain rate-dependent mechanical properties and constitutive modeling of the cancellous bone from piglet cervical vertebrae.
    Li Z; Wang J; Song G; Ji C; Han X
    Comput Methods Programs Biomed; 2020 May; 188():105279. PubMed ID: 31865093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An anisotropic elastic-viscoplastic damage model for bone tissue.
    Schwiedrzik JJ; Zysset PK
    Biomech Model Mechanobiol; 2013 Apr; 12(2):201-13. PubMed ID: 22527365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An over-nonlocal implicit gradient-enhanced damage-plastic model for trabecular bone under large compressive strains.
    Hosseini HS; Horák M; Zysset PK; Jirásek M
    Int J Numer Method Biomed Eng; 2015 Nov; 31(11):. PubMed ID: 26033968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.
    Spingarn C; Wagner D; Rémond Y; George D
    Biomed Mater Eng; 2017; 28(s1):S153-S158. PubMed ID: 28372290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New microscale constitutive model of human trabecular bone based on depth sensing indentation technique.
    Pawlikowski M; Jankowski K; Skalski K
    J Mech Behav Biomed Mater; 2018 Sep; 85():162-169. PubMed ID: 29902776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An explicit micro-FE approach to investigate the post-yield behaviour of trabecular bone under large deformations.
    Werner B; Ovesy M; Zysset PK
    Int J Numer Method Biomed Eng; 2019 May; 35(5):e3188. PubMed ID: 30786166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear homogenisation approach.
    Levrero-Florencio F; Margetts L; Sales E; Xie S; Manda K; Pankaj P
    J Mech Behav Biomed Mater; 2016 Aug; 61():384-396. PubMed ID: 27108348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear viscoelastic characterization of bovine trabecular bone.
    Manda K; Wallace RJ; Xie S; Levrero-Florencio F; Pankaj P
    Biomech Model Mechanobiol; 2017 Feb; 16(1):173-189. PubMed ID: 27440127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sensitivity of nonlinear computational models of trabecular bone to tissue level constitutive model.
    Baumann AP; Shi X; Roeder RK; Niebur GL
    Comput Methods Biomech Biomed Engin; 2016; 19(5):465-73. PubMed ID: 25959510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlocal constitutive model for trabecular bone softening in compression.
    Charlebois M; Jirásek M; Zysset PK
    Biomech Model Mechanobiol; 2010 Oct; 9(5):597-611. PubMed ID: 20238139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction.
    Sabet FA; Jin O; Koric S; Jasiuk I
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2941. PubMed ID: 29168345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D pull-out finite element simulation of the pedicle screw-trabecular bone interface at strain rates.
    Çetin A; Bircan DA
    Proc Inst Mech Eng H; 2022 Jan; 236(1):134-144. PubMed ID: 34479459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of a nonlinear μFE model based on cohesive-frictional plasticity for trabecular bone.
    Schwiedrzik J; Gross T; Bina M; Pretterklieber M; Zysset P; Pahr D
    Int J Numer Method Biomed Eng; 2016 Apr; 32(4):e02739. PubMed ID: 26224581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of fabric in the large strain compressive behavior of human trabecular bone.
    Charlebois M; Pretterklieber M; Zysset PK
    J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical responses of the periodontal ligament based on an exponential hyperelastic model: a combined experimental and finite element method.
    Huang H; Tang W; Yan B; Wu B; Cao D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):188-98. PubMed ID: 25648914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-finite element simulation of trabecular-bone post-yield behaviour--effects of material model, element size and type.
    Verhulp E; Van Rietbergen B; Muller R; Huiskes R
    Comput Methods Biomech Biomed Engin; 2008 Aug; 11(4):389-95. PubMed ID: 18568833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.