These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 27592291)

  • 1. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
    Lin L; Samuel J; Zeng X; Wang X
    J Mech Behav Biomed Mater; 2017 Jan; 65():224-235. PubMed ID: 27592291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational investigation of ultrastructural behavior of bone using a cohesive finite element approach.
    Maghsoudi-Ganjeh M; Lin L; Wang X; Zeng X
    Biomech Model Mechanobiol; 2019 Apr; 18(2):463-478. PubMed ID: 30470944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the post-yield behavior of mineralized bone fibril arrays using a 3D non-linear finite element unit-cell model.
    Alizadeh E; Omairey S; Zysset P
    J Mech Behav Biomed Mater; 2023 Mar; 139():105660. PubMed ID: 36638635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-silico simulation of nanoindentation on bone using a 2D cohesive finite element model.
    Xiao P; Roy A; Wang X
    J Mech Behav Biomed Mater; 2024 Mar; 151():106403. PubMed ID: 38237206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of the effect of water on the nanomechanical behavior of bone.
    Maghsoudi-Ganjeh M; Wang X; Zeng X
    J Mech Behav Biomed Mater; 2020 Jan; 101():103454. PubMed ID: 31586882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive behaviour of uniaxially aligned individual mineralised collagen fibres at the micro- and nanoscale.
    Groetsch A; Gourrier A; Schwiedrzik J; Sztucki M; Beck RJ; Shephard JD; Michler J; Zysset PK; Wolfram U
    Acta Biomater; 2019 Apr; 89():313-329. PubMed ID: 30858052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Average hydroxyapatite concentration is uniform in the extracollagenous ultrastructure of mineralized tissues: evidence at the 1-10-microm scale.
    Hellmich C; Ulm FJ
    Biomech Model Mechanobiol; 2003 Aug; 2(1):21-36. PubMed ID: 14586815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are mineralized tissues open crystal foams reinforced by crosslinked collagen? Some energy arguments.
    Hellmich Ch; Ulm FJ
    J Biomech; 2002 Sep; 35(9):1199-1212. PubMed ID: 12163310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical modeling of the elastic properties of bone at submicron scales: the role of extrafibrillar mineralization.
    Nikolov S; Raabe D
    Biophys J; 2008 Jun; 94(11):4220-32. PubMed ID: 18310256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling of Stiffness and Strength of Bone at Nanoscale.
    Abueidda DW; Sabet FA; Jasiuk IM
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28334367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extrafibrillar matrix yield stress and failure envelopes for mineralised collagen fibril arrays.
    Speed A; Groetsch A; Schwiedrzik JJ; Wolfram U
    J Mech Behav Biomed Mater; 2020 May; 105():103563. PubMed ID: 32279843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional multiscale finite element model of bone coupling mineralized collagen fibril networks and lamellae.
    Wang Y; Ural A
    J Biomech; 2020 Nov; 112():110041. PubMed ID: 32950759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layered water in crystal interfaces as source for bone viscoelasticity: arguments from a multiscale approach.
    Eberhardsteiner L; Hellmich C; Scheiner S
    Comput Methods Biomech Biomed Engin; 2014; 17(1):48-63. PubMed ID: 22563708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
    Kotha SP; Guzelsu N
    J Biomech; 2007; 40(1):36-45. PubMed ID: 16434048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of water on nanomechanics of bone is different between tension and compression.
    Samuel J; Park JS; Almer J; Wang X
    J Mech Behav Biomed Mater; 2016 Apr; 57():128-38. PubMed ID: 26710258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.