These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27592299)

  • 41. Medio-lateral knee fluency in anterior cruciate ligament-injured athletes during dynamic movement trials.
    Panos JA; Hoffman JT; Wordeman SC; Hewett TE
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():7-12. PubMed ID: 26895446
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of a knee extension constraint brace on selected lower extremity motion patterns during a stop-jump task.
    Lin CF; Liu H; Garrett WE; Yu B
    J Appl Biomech; 2008 May; 24(2):158-65. PubMed ID: 18579908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of knee bracing on tibial rotation during high loading activities in anterior cruciate ligament-reconstructed knees.
    Giotis D; Zampeli F; Pappas E; Mitsionis G; Papadopoulos P; Georgoulis AD
    Arthroscopy; 2013 Oct; 29(10):1644-52. PubMed ID: 23993058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Landing characteristics in subjects with normal and anterior cruciate ligament deficient knee joints.
    McNair PJ; Marshall RN
    Arch Phys Med Rehabil; 1994 May; 75(5):584-9. PubMed ID: 8185454
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effects of three jump landing tasks on kinetic and kinematic measures: implications for ACL injury research.
    Cruz A; Bell D; McGrath M; Blackburn T; Padua D; Herman D
    Res Sports Med; 2013; 21(4):330-42. PubMed ID: 24067119
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Biomechanical characteristics of the knee joint in female athletes during tasks associated with anterior cruciate ligament injury.
    Nagano Y; Ida H; Akai M; Fukubayashi T
    Knee; 2009 Mar; 16(2):153-8. PubMed ID: 19110433
    [TBL] [Abstract][Full Text] [Related]  

  • 47. On the impact force analysis of two-leg landing with a flexed knee.
    Mojaddarasil M; Sadigh MJ
    Comput Methods Biomech Biomed Engin; 2021 Dec; 24(16):1862-1875. PubMed ID: 34027762
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Abdominal Bracing Increases Ground Reaction Forces and Reduces Knee and Hip Flexion During Landing.
    Campbell A; Kemp-Smith K; O'Sullivan P; Straker L
    J Orthop Sports Phys Ther; 2016 Apr; 46(4):286-92. PubMed ID: 26954271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Landing Kinematics and Kinetics at the Knee During Different Landing Tasks.
    Heebner NR; Rafferty DM; Wohleber MF; Simonson AJ; Lovalekar M; Reinert A; Sell TC
    J Athl Train; 2017 Dec; 52(12):1101-1108. PubMed ID: 29154692
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Increased hip and knee flexion during landing decreases tibiofemoral compressive forces in women who have undergone anterior cruciate ligament reconstruction.
    Tsai LC; Powers CM
    Am J Sports Med; 2013 Feb; 41(2):423-9. PubMed ID: 23271006
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Efficacy of Prophylactic Knee Bracing in Sports.
    Blecha K; Nuelle CW; Smith PA; Stannard JP; Ma R
    J Knee Surg; 2022 Feb; 35(3):242-248. PubMed ID: 34952553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of fatigue on knee kinetics and kinematics in stop-jump tasks.
    Chappell JD; Herman DC; Knight BS; Kirkendall DT; Garrett WE; Yu B
    Am J Sports Med; 2005 Jul; 33(7):1022-9. PubMed ID: 15983125
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of landing biomechanics between male and female dancers and athletes, part 2: Influence of fatigue and implications for anterior cruciate ligament injury.
    Liederbach M; Kremenic IJ; Orishimo KF; Pappas E; Hagins M
    Am J Sports Med; 2014 May; 42(5):1089-95. PubMed ID: 24595401
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Altered landing mechanics in ACL-reconstructed patients.
    Oberländer KD; Brüggemann GP; Höher J; Karamanidis K
    Med Sci Sports Exerc; 2013 Mar; 45(3):506-13. PubMed ID: 23034645
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of prophylactic knee bracing on lower extremity joint position and muscle activation during running.
    Osternig LR; Robertson RN
    Am J Sports Med; 1993; 21(5):733-7. PubMed ID: 8238717
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of foot rotation positions on knee valgus during single-leg drop landing: Implications for ACL injury risk reduction.
    Teng PSP; Kong PW; Leong KF
    Knee; 2017 Jun; 24(3):547-554. PubMed ID: 28336150
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combined in vivo/in vitro method to study anteriomedial bundle strain in the anterior cruciate ligament using a dynamic knee simulator.
    Cassidy K; Hangalur G; Sabharwal P; Chandrashekar N
    J Biomech Eng; 2013 Mar; 135(3):35001. PubMed ID: 24231822
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Empirical Based Modeling for the Assessment of Dynamic Knee Stability: Implications for Anterior Cruciate Ligament Injury Risk.
    Morgan KD; Donnelly CJ; Reinbolt JA
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1676-1679. PubMed ID: 30440717
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.