These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27592320)

  • 1. Treatment of Ni-EDTA containing wastewater by electrocoagulation using iron scraps packed-bed anode.
    Ye X; Zhang J; Zhang Y; Lv Y; Dou R; Wen S; Li L; Chen Y; Hu Y
    Chemosphere; 2016 Dec; 164():304-313. PubMed ID: 27592320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel removal from wastewater using electrocoagulation process with zinc electrodes under various operating conditions: performance investigation, mechanism exploration, and cost analysis.
    Shaker OA; Safwat SM; Matta ME
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):26650-26662. PubMed ID: 36369444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive removal of Cu-EDTA and Ni-EDTA via microwave-enhanced Fenton oxidation with hydroxide precipitation.
    Lin Q; Pan H; Yao K; Pan Y; Long W
    Water Sci Technol; 2015; 72(7):1184-90. PubMed ID: 26398034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of Cu-EDTA complexes from wastewater by combined electrooxidation and electrocoagulation process: Performance and mechanism study.
    Song P; Sun C; Wang J; Ai S; Dong S; Sun J; Sun S
    Chemosphere; 2022 Jan; 287(Pt 1):131971. PubMed ID: 34438208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of iron ion configurations on Ni
    Lü X; Xu T; Zhou Y; Peng Q; Ou J; Hu B; Xie Z; Lei X; Yu G
    J Environ Sci (China); 2023 Feb; 124():823-834. PubMed ID: 36182186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti
    Zhang F; Wang W; Xu L; Zhou C; Sun Y; Niu J
    Chemosphere; 2021 Sep; 278():130465. PubMed ID: 34126689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocoagulation in a packed bed reactor-complete treatment of color and cod from real textile wastewater.
    Tezcan Un U; Aytac E
    J Environ Manage; 2013 Jul; 123():113-9. PubMed ID: 23590945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between sinusoidal AC coagulation and conventional DC coagulation in removing Cu
    Xu T; Zhou Y; Hu B; Lei X; Yu G
    Ecotoxicol Environ Saf; 2020 Jul; 197():110629. PubMed ID: 32325329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-N-doped MoO
    Zhang J; Zhou W; Yang L; Chen Y; Hu Y
    Environ Sci Pollut Res Int; 2018 Aug; 25(23):22754-22765. PubMed ID: 29855876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.
    Durante C; Cuscov M; Isse AA; Sandonà G; Gennaro A
    Water Res; 2011 Feb; 45(5):2122-30. PubMed ID: 21255817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation.
    Tian Y; He W; Liang D; Yang W; Logan BE; Ren N
    Water Res; 2018 Jul; 138():129-136. PubMed ID: 29574200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Minimizing toxic chlorinated byproducts during electrochemical oxidation of Ni-EDTA: Importance of active chlorine-triggered Fe(II) transition to Fe(IV).
    Xu H; Chen R; Liang S; Lei Z; Zheng W; Yan Z; Cao J; Wei C; Feng C
    Water Res; 2022 Jul; 219():118548. PubMed ID: 35561618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Cu removal from CuEDTA complex-containing wastewater using electrochemically controlled sacrificial iron anode.
    Ya V; Martin N; Chou YH; Chen SS; Choo KH; Naddeo V; Le NC; Li CW
    Chemosphere; 2021 Feb; 264(Pt 2):128573. PubMed ID: 33059281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of green rust-deposited MoS
    Lin KS; Aberdeen CD; Mdlovu NV; Fareesa S; Khoo KS
    Chemosphere; 2023 Oct; 339():139703. PubMed ID: 37536537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of electrocoagulation treatment with iron, aluminum and zinc electrodes for selenium removal from flour production wastewater.
    Gong C; Zhang J; Ren X; He C; Han J; Zhang Z
    Chemosphere; 2022 Sep; 303(Pt 3):135249. PubMed ID: 35691397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential use of the electrocoagulation-electrooxidation processes for domestic wastewater treatment.
    Özyonar F; Korkmaz MU
    Chemosphere; 2022 Mar; 290():133172. PubMed ID: 34914950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of real wastewater produced from Mobil car wash station using electrocoagulation technique.
    El-Ashtoukhy ES; Amin NK; Fouad YO
    Environ Monit Assess; 2015 Oct; 187(10):628. PubMed ID: 26373303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and detoxification of petroleum refinery wastewater by electrocoagulation process.
    Gousmi N; Sahmi A; Li HZ; Poncin S; Djebbar R; Bensadok K
    Environ Technol; 2016 Sep; 37(18):2348-57. PubMed ID: 26853634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocoagulation treatment of furniture industry wastewater.
    Vicente C; Silva JR; Santos AD; Silva JF; Mano JT; Castro LM
    Chemosphere; 2023 Jul; 328():138500. PubMed ID: 36963577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical process employing scrap metal waste as electrodes for dye removal.
    Nippatla N; Philip L
    J Environ Manage; 2020 Nov; 273():111039. PubMed ID: 32741763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.