These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 27592588)

  • 1. A rapid method to estimate NADH regeneration rates in living cells.
    Kuepper J; Zobel S; Wierckx N; Blank LM
    J Microbiol Methods; 2016 Nov; 130():92-94. PubMed ID: 27592588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.
    Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A
    FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification.
    Blank LM; Ebert BE; Bühler B; Schmid A
    Biotechnol Bioeng; 2008 Aug; 100(6):1050-65. PubMed ID: 18553399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of Pseudomonas putida KT2440 to increased NADH and ATP demand.
    Ebert BE; Kurth F; Grund M; Blank LM; Schmid A
    Appl Environ Microbiol; 2011 Sep; 77(18):6597-605. PubMed ID: 21803911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic response of
    Zobel S; Kuepper J; Ebert B; Wierckx N; Blank LM
    Eng Life Sci; 2017 Jan; 17(1):47-57. PubMed ID: 32624728
    [No Abstract]   [Full Text] [Related]  

  • 6. A Photoenzymatic NADH Regeneration System.
    Höfler GT; Fernández-Fueyo E; Pesic M; Younes SH; Choi EG; Kim YH; Urlacher VB; Arends IWCE; Hollmann F
    Chembiochem; 2018 Nov; 19(22):2344-2347. PubMed ID: 30192991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain.
    Bühler B; Park JB; Blank LM; Schmid A
    Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometry of the NADH-oxidoreductase reaction for dehydrogenase determinations.
    Barnes S; Spenney JG
    Clin Chim Acta; 1980 Nov; 107(3):149-54. PubMed ID: 6893684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors.
    Ryan JD; Fish RH; Clark DS
    Chembiochem; 2008 Nov; 9(16):2579-82. PubMed ID: 18816544
    [No Abstract]   [Full Text] [Related]  

  • 10. The correlates and alleged biochemical background of the resazurin reduction test in semen.
    Zalata AA; Lammertijn N; Christophe A; Comhaire FH
    Int J Androl; 1998 Oct; 21(5):289-94. PubMed ID: 9805245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene.
    Nikel PI; de Lorenzo V
    Metab Eng; 2013 Jan; 15():98-112. PubMed ID: 23149123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indole toxicity involves the inhibition of adenosine triphosphate production and protein folding in Pseudomonas putida.
    Kim J; Hong H; Heo A; Park W
    FEMS Microbiol Lett; 2013 Jun; 343(1):89-99. PubMed ID: 23527579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically encoded probes for NAD
    Bilan DS; Belousov VV
    Free Radic Biol Med; 2016 Nov; 100():32-42. PubMed ID: 27387770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photocatalytic and free radical interactions of the heterocyclic N-oxide resazurin with NADH, GSH, and Dopa.
    Prütz WA; Butler J; Land EJ
    Arch Biochem Biophys; 1996 Mar; 327(2):239-48. PubMed ID: 8619609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrimidine base catabolism in Pseudomonas putida biotype B.
    West TP
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):163-7. PubMed ID: 11759049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo monitoring of cellular energy metabolism using SoNar, a highly responsive sensor for NAD(+)/NADH redox state.
    Zhao Y; Wang A; Zou Y; Su N; Loscalzo J; Yang Y
    Nat Protoc; 2016 Aug; 11(8):1345-59. PubMed ID: 27362337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Urine-Fueled Light-Driven NADH Regeneration for Redox Biocatalysis.
    Choi WS; Lee SH; Ko JW; Park CB
    ChemSusChem; 2016 Jul; 9(13):1559-64. PubMed ID: 27198582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.
    Bekers KM; Heijnen JJ; van Gulik WM
    Yeast; 2015 Aug; 32(8):541-57. PubMed ID: 26059529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic model for prediction of formate dehydrogenase kinetics under industrially relevant conditions.
    Schmidt T; Michalik C; Zavrel M; Spiess A; Marquardt W; Ansorge-Schumacher MB
    Biotechnol Prog; 2010; 26(1):73-8. PubMed ID: 19830796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.