These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 27593160)

  • 1. Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth.
    Wang Z; Xu Z; Zhao W; Chen W; Miyoshi T; Sahai N
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):28116-28123. PubMed ID: 27593160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small molecule-mediated control of hydroxyapatite growth: free energy calculations benchmarked to density functional theory.
    Xu Z; Yang Y; Wang Z; Mkhonto D; Shang C; Liu ZP; Cui Q; Sahai N
    J Comput Chem; 2014 Jan; 35(1):70-81. PubMed ID: 24272540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A potential mechanism for amino acid-controlled crystal growth of hydroxyapatite.
    Wang Z; Xu Z; Zhao W; Sahai N
    J Mater Chem B; 2015 Dec; 3(47):9157-9167. PubMed ID: 32263130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic force microscopy reveals hydroxyapatite-citrate interfacial structure at the atomic level.
    Jiang W; Pan H; Cai Y; Tao J; Liu P; Xu X; Tang R
    Langmuir; 2008 Nov; 24(21):12446-51. PubMed ID: 18823133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface energetics of the hydroxyapatite nanocrystal-water interface: a molecular dynamics study.
    Zhao W; Xu Z; Yang Y; Sahai N
    Langmuir; 2014 Nov; 30(44):13283-92. PubMed ID: 25314374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical interaction of glycero-phosphate dimethacrylate (GPDM) with hydroxyapatite and dentin.
    Yoshihara K; Nagaoka N; Hayakawa S; Okihara T; Yoshida Y; Van Meerbeek B
    Dent Mater; 2018 Jul; 34(7):1072-1081. PubMed ID: 29716740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study of bone sialoprotein in bone biomineralization.
    Yang Y; Mkhonto D; Cui Q; Sahai N
    Cells Tissues Organs; 2011; 194(2-4):182-7. PubMed ID: 21597272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energetic basis for the molecular-scale organization of bone.
    Tao J; Battle KC; Pan H; Salter EA; Chien YC; Wierzbicki A; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):326-31. PubMed ID: 25540415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption.
    Kandori K; Kuroda T; Togashi S; Katayama E
    J Phys Chem B; 2011 Feb; 115(4):653-9. PubMed ID: 21162543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation Insight into the Synergic Role of Citrate and Polyaspartic Peptide in Biomineralization.
    Zeng J; Yang S; Yu H; Xu Z; Quan X; Zhou J
    Langmuir; 2021 Mar; 37(11):3410-3419. PubMed ID: 33691409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative In Vitro Dissolution Assessment of Calcined and Uncalcined Hydroxyapatite Using Differences in Bioresorbability and Biomineralization.
    Jang WY; Pyun JC; Chang JH
    Int J Mol Sci; 2024 Jan; 25(1):. PubMed ID: 38203791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manipulation of partially oriented hydroxyapatite building blocks to form flowerlike bundles without acid-base regulation.
    Wen Z; Wang Z; Chen J; Zhong S; Hu Y; Wang J; Zhang Q
    Colloids Surf B Biointerfaces; 2016 Jun; 142():74-80. PubMed ID: 26930036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-Activity Relationships of Hydroxyapatite-Binding Peptides.
    Ling C; Zhao W; Wang Z; Chen J; Ustriyana P; Gao M; Sahai N
    Langmuir; 2020 Mar; 36(10):2729-2739. PubMed ID: 32078330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding mechanism and binding free energy of amino acids and citrate to hydroxyapatite surfaces as a function of crystallographic facet, pH, and electrolytes.
    Hoff SE; Liu J; Heinz H
    J Colloid Interface Sci; 2022 Jan; 605():685-700. PubMed ID: 34365305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of the adsorption of an N-terminal peptide of statherin, SN15, and its mutants on hydroxyapatite surfaces.
    Luo M; Gao Y; Yang S; Quan X; Sun D; Liang K; Li J; Zhou J
    Phys Chem Chem Phys; 2019 May; 21(18):9342-9351. PubMed ID: 30994664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Dynamics Exploration of the Growth Mechanism of Hydroxyapatite Nanoparticles Regulated by Glutamic Acid.
    Wang W; Xue Z; Wang R; Wang X; Xu D
    J Phys Chem B; 2021 May; 125(19):5078-5088. PubMed ID: 33974433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the Materials Properties of Hydroxyapatite Nanoparticles on Fibronectin Deposition and Conformation.
    Wu F; Lin DD; Chang JH; Fischbach C; Estroff LA; Gourdon D
    Cryst Growth Des; 2015 May; 15(5):2452-2460. PubMed ID: 26257585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The status of citrate in the hydroxyapatite/collagen complex of bone; and Its role in bone formation.
    Costello LC; Chellaiah M; Zou J; Franklin RB; Reynolds MA
    J Regen Med Tissue Eng; 2014; 3():4. PubMed ID: 25745562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrate modulates calcium oxalate crystal growth by face-specific interactions.
    Grohe B; O'Young J; Langdon A; Karttunen M; Goldberg HA; Hunter GK
    Cells Tissues Organs; 2011; 194(2-4):176-81. PubMed ID: 21555861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.