These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 27593238)

  • 21. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system.
    Solís-Domínguez FA; González-Chávez MC; Carrillo-González R; Rodríguez-Vázquez R
    J Hazard Mater; 2007 Mar; 141(3):630-6. PubMed ID: 16920257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process.
    Veseý T; Tlustos P; Száková J
    Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study.
    Souza TD; Borges AC; Braga AF; Veloso RW; Teixeira de Matos A
    Chemosphere; 2019 Nov; 234():402-408. PubMed ID: 31228843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation of water polluted by thallium, cadmium, zinc, and lead with the use of macrophyte Callitriche cophocarpa.
    Augustynowicz J; Tokarz K; Baran A; Płachno BJ
    Arch Environ Contam Toxicol; 2014 May; 66(4):572-81. PubMed ID: 24477868
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical forms governing Cd tolerance and detoxification in duckweed (Landoltia punctata).
    Wang X; Zhang B; Wu D; Hu L; Huang T; Gao G; Huang S; Wu S
    Ecotoxicol Environ Saf; 2021 Jan; 207():111553. PubMed ID: 33254410
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential of four aquatic plant species to remove
    Vanhoudt N; Van Ginneken P; Nauts R; Van Hees M
    Environ Sci Pollut Res Int; 2018 Sep; 25(27):27187-27195. PubMed ID: 30027375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential Bioaccumulation of Select Heavy Metals from Wastewater by Lemna minor.
    Khan MA; Wani GA; Majid H; Farooq FU; Reshi ZA; Husaini AM; Shah MA
    Bull Environ Contam Toxicol; 2020 Nov; 105(5):777-783. PubMed ID: 33044567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Cd accumulation by Graphene oxide (GO) under Cd stress in duckweed.
    Yang L; Chen Y; Shi L; Yu J; Yao J; Sun J; Zhao L; Sun J
    Aquat Toxicol; 2020 Dec; 229():105579. PubMed ID: 33075615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phytoremediation potential of Cd and Zn by wetland plants, Colocasia esculenta L. Schott., Cyperus malaccensis Lam. and Typha angustifolia L. grown in hydroponics.
    Chayapan P; Kruatrachue M; Meetam M; Pokethitiyook P
    J Environ Biol; 2015 Sep; 36(5):1179-83. PubMed ID: 26521563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A strategy to potentiate Cd phytoremediation by saltmarsh plants - autochthonous bioaugmentation.
    Nunes da Silva M; Mucha AP; Rocha AC; Teixeira C; Gomes CR; Almeida CM
    J Environ Manage; 2014 Feb; 134():136-44. PubMed ID: 24486467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum.
    Guo H; Jiang J; Gao J; Zhang J; Zeng L; Cai M; Zhang J
    Ecotoxicol Environ Saf; 2020 Jun; 195():110502. PubMed ID: 32203771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake and Bioaccumulation of Pentachlorophenol by Emergent Wetland Plant Phragmites australis (Common Reed) in Cadmium Co-contaminated Soil.
    Hechmi N; Ben Aissa N; Abdenaceur H; Jedidi N
    Int J Phytoremediation; 2015; 17(1-6):109-16. PubMed ID: 25237721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium bioaccumulation in Proisotoma minuta in relation to bioavailability in soils.
    Nursita AI; Singh B; Lees E
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1767-73. PubMed ID: 19493569
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessing the potential for cadmium phytoremediation with Calamagrostis epigejos: a pot experiment.
    Lehmann C; Rebele F
    Int J Phytoremediation; 2004; 6(2):169-83. PubMed ID: 15328982
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of water lettuce (Pistia stratiotes L.) for rhizofiltration of a highly polluted solution by cadmium and lead.
    Veselý T; Tlustos P; Száková J
    Int J Phytoremediation; 2011 Oct; 13(9):859-72. PubMed ID: 21972509
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: A laboratory study.
    Dogan M; Karatas M; Aasim M
    Ecotoxicol Environ Saf; 2018 Feb; 148():431-440. PubMed ID: 29101888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L.
    Abdallah MA
    Environ Technol; 2012; 33(13-15):1609-14. PubMed ID: 22988621
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Growth responses of Rorippa globosa and its accumulation characteristics of Cd and as under the Cd-As combined pollution].
    Sun YB; Zhou QX; Ren LP
    Huan Jing Ke Xue; 2007 Jun; 28(6):1355-60. PubMed ID: 17674749
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytoremediation of cadmium by the facultative halophyte plant Bolboschoenus maritimus (L.) Palla, at different salinities.
    Santos MS; Pedro CA; Gonçalves SC; Ferreira SM
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15598-609. PubMed ID: 26013743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth).
    Van Echelpoel W; Boets P; Goethals PL
    PLoS One; 2016; 11(11):e0166132. PubMed ID: 27861603
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.